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ABSTRACT 

The purpose of this work is to clarify some techniques in the 

generation of shaded color images on a color raster terminal. The 

implementation of this capability is integrated into the existing 

software at the Mechanical Engineering Computer-Aided Design 

facility at Lehigh University. 

The MOVIE.BYU program from Brigharo Young University, was used 

on a basis for the shading algorithms. In order to display the 

output from this program, device drivers were written for the 

Digital Equipment Corporation's VS11 color raster terminal. The 

VS11 terminal can only display 16 colors, while for realistic images 

the output of MOVIE.BYU provides 256 shades of a single color. 

Consequently, a blending of the possible VS11 colors in a patterning 

effect was introduced into the program. In addition, to make the 

complexities of MOVIE.BYU transparent to users, some of its more 

general and complex features were hidden through the interfacing of 

a simpler command structure. 

In making these additions, major modifications were performed 

on MOVIE.BYU. These modifications and the device drivers are 

documented in this paper. 

The Computer-Alded Design Laboratory had a need to display 

models generated from the McAuto Unigraphics Design System as a 

shaded color object. The data from these models could be presented 
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in finite element form; i.e. three- or four-noded polygons, or six-, 

eight-, fifteen-, or twenty-noded volume elements. An additional 

feature of this paper is an interface program which transforms the 

data in any of the above finite element forms into a polygonal 

representation for MOVIE.BYU input. 
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CHAPTER I 

INTRODUCTION 

The procedure that was developed by the author at Lehigh 

University for generating a shaded color image from a geometric 

model involves the following steps. A model is created on the 

McAuto Unigraphics design station and a finite element mesh is 

applied to it. An interface program UGFEMBYU is run to transfer 

the output data from Unigraphics to a form compatible with 

MOVIE.BYU. 

MOVIE.BYU is then run on the VS11 color terminal. The output 

is first displayed in the line drawing mode, using no hidden line 

removal or shading, and oriented to its desired position. The 

object is then viewed as a shaded image following a modified set 

of MOVIE.BYU commands and prompts. 

A description of the hardware and the theory of displaying 

shaded images is discussed. The device drivers, Interface program 

and command structure modifications to MOVIE.BYU are presented. 

This paper concludes with a sample demonstration run. 
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CHAPTER II 

DESCRIPTION OF HARDWARE 

VAX 11/780 

The computer at the Mechanical Engineering Computer-Aided 

Design Laboratory is Digital Equipment Corporation's VAX 11/780 (5), 

It has a word and addressing size of 32 bits. The VAX is currently 

equipped with two megabytes of core and two 300 megabyte 

disk drives. The VAX runs the virtual operating system VAX/VMS 

with a page size of 512 bytes. Six VS11 color raster terminals are 

interfaced to it and operate at channel speed. This architecture 

is compatible with MOVIE.BYU's required 32 bit word size. With 

virtual memory it is possible to create large models composed of 

many polygons. The system is currently set up to handle models 

composed of up to 3,000 polygons. 

VS11 Color Raster System 

The VS11 color raster terminal currently used at Lehlgh 

university is a 19-inch RGB (red, green, blue) color CRT which can 

display 16 colors. It has a visible resolution at 512 x 480 pixels. 

The color values for each pixel is defined in 4 bits. It also has 

incorporated into it a VT100 alphanumeric terminal. This feature 

is functionally separate from the VS11 graphic capability and just 

uses the same monitor for output. 
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The VS11 color raster terminal is part of the VSV11/VS11 video 

graphics system from Digital Equipment Corporation.  It consists of 

a display processor (high speed microprocessor), a graphic 

instruction set, image memory, joystick and sync generator. The 

VSV11/VS11 video supports two 32K "segments" of Display File Memory 

called Main and Auxiliary. The Main segment would normally contain 

the display file, and the Auxiliary segment would normally contain 

a library of subroutines or image data. The display processor will 

sequence through either of these segments with the Display Program 

Counter register containing the virtual address of the next memory 

location. The system operates as part of the VAX/VMS executive and 

is incorporated into it by SYSGEN procedures. For a complete 

specification and interface guide to the VAX refer to "VS/VSV11 

VAX/VMS Version 2.0 S/W Driver's Users Guide" (7). 

In order to display an image on the VS11, the data must be 

organized into a display file in the memory of the VAX. This file 

consists of a list of VS11 Instructions (graphic, control and data), 

which define the image. These are sixteen bit instructions which 

tell the display processor what action to take. The Display File 

starting address is then moved to the Display Program Counter. The 

microprocessor then sequences through the Display File instructions 

and generates the desired image on the monitor. A complete technical 

userrmanual is available from Digital Equipment Corporation (6). 

A list of the common graphic instructions, their opcodes and bit 

patterns, and their implementation will be discussed in Chapter IV. 
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CHAPTER III 

MOVIE.BYU DESCRIPTION AND THEORY 

Functional Description 

MOVIE.BYU (2) is a group of Fortran programs used for the 

display and manipulation of data in the form of N-sided polygons, 

solid elements or contour lines. This data could represent 

architectural, topological or mathematical models. MOVIE.BYU is 

used at Lehigh University's Mechanical Engineering Computer-Aided 

Design Laboratory for the shaded color display of Polygonal Element 

Data. This data is generated from a finite element description of 

a geometric model, created by the design capabilities of McAuto's 

Unigraphics Design System (10). 

MOVIE.BYU requires a computer with at least a 32-blt word size, 

though a 16-bit version of MOVIE.BYU with fewer capabilities is 

available (4). A complete description and excellent training manual 

of its operation is available from Hank Christiansen at Brigham 

Young University (3). 

The modules of MOVIE.BYU that are used in this paper are: 

COMMAND.FOR, HIDDEN.FOR, AND DEVICE.TK4., which are modified and 

renamed COMMANDLU.FOR, HIDDENLU.FOR, and DEVICEVS.FOR. They are 

compiled and linked together with the MACRO'S VSA32768 and ASCII 

to form DISPLAY.EXE. These modules provide the capabilities for 

displaying an object as a line drawing, with or without hidden 

lines removed, or as a continuous shaded color image. 
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COMMAND.FOR is the interactive command processor. It provides 

a four letter key word command structure. Some of its capabilities 

include: 

• Global or local rotations and translations 

• Color selection of the background and individual parts 

• Choice of shading parameters 

1. Uniform over the polygon surface (UNIFORM) 
2. Vary linearly over the polygon but not matching 

at the polygon boundaries (FLAT) 
3. Vary linearly over the polygon with shading 

matched at the boundaries (SMOOTH) 

• Movable light source 

• Adjustment of the intensity of the object's highlights 

and its functional variation with the angle between the 

reflected light and the observer. 

COMMAND.FOR had to be modified to handle subroutine calls to 

the VS11. This involved rewriting some of the subroutines to take 

advantage of the VSU capabilities. Additional changes were made 

to simplify the user interface and some new commands were intro- 

duced. Also, array dimensions were increased to allow the display 

of models with more elements. 

HIDDEN.FOR includes the subroutines to provide the hidden line 

or surface removal functions. This module was only slightly 

modified. The changes that were made involved increasing array 

sizes so that models with more elements could be processed. 

DEVICE.TK4 is the module that provides the Device Driver 

Routines. Since the drivers for DEVICE.TK4 were written for the 

Tektronix 4027 color terminal, the driver routines for the VS11 

-7- 



www.manaraa.com

had to be created. The VS11 has a completely different functional 

description and addressing scheme than the 4027. Thus, the 4027 

driver subroutines could only be used as a general guide as to what 

information was being passed to them and the manner in which they 

should respond. 

Hidden Line - Surface Removal 

MOVIE.BYU offers the computer-aided design user two important 

features, the hidden line algorithms and shading algorithms. These 

features are not normally available on traditional computer-aided 

design systems. Although newer solid modeling design systems are 

beginning to make use of them (1,11). 

The hidden line or hidden surface algorithms provide a means 

for removal of hidden parts from images of solid objects. Figure la 

shows a cube and all the lines that define it. Figure lb shows the 

same object with the hidden lines removed; only a part of the 

external surface is visible. 

MOVIE.BYU uses an algorithm developed by Watkins (14) for its 

hidden line capability. The algorithm operates in image space, i.e. 

it performs no more calculations than are required for accuracy 

relative to the resolution of the display. Thus, the algorithm 

calculates the intensity for each of the 512 x 480 points on the 

screen. The Watkins algorithm is classified as a Scan Line Algor- 

ithm. It solves the hidden line problem one scan line at a time, 

starting at the top and proceeding down the 480 scan lines to the 

bottom. 0 —o— 
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Figure la 

Figure lb 

Figure 1 

Hidden Line Removal 
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The algorithm operates by first doing a y sort of the edges of 

the polygons, i.e. by sorting the line edges of all the polygons 

from maximum y to minimum y values. As the scan proceeds from 

maximum y to minimum y down the screen, the y sorted structure is 

examined to find any new polygon edges that are on the scan line. 

These are added to those already there and the edges that terminate 

on the scan line are deleted. This is an example of scan line 

coherence. The edges that intersect one scan line are likely to 

intersect the next. Thus a list of the "working" edges is main- 

tained and the algorithm makes incremental additions and sub- 

tractions to the list. 

The algorithm then examines this list of "working" edges to 

determine which faces of the polygons are visible, and the location 

of the corresponding edges on the scan line. To accomplish this, 

the edges of the polygons that fall on the scan line are sorted in 

the x direction and sample segments are created. In Figure 2, the 

segments AC, CB, and BD are normally created from polygon A and B. 

In contradistinction to traditional scan-line algorithms, the 

Watkins algorithm only creates segments AC and CD. It tests to see 

which line segment is in front of the other by doing a binary sub- 

division search in the z direction. If the closest edge in the x 

direction of one segment is deeper in z than the furtherest edge of 

another segment, then clearly the first segment is behind the second 

and no further calculations are necessary. In cases where this is 

not true, line CD is divided at its midpoint (Figure 3). Its left 
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Scan Line 

A      C   B 

Figure 2 

Scan Line Intersecting Polygons A and B 

* x 

Figure 3 

Depth Representation of Segments AB and CD 
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half can be seen to obscure segment CB since point E is closer in 

the z direction than any point on AB and the depth at C and B need 

not be computed. 

For a general discussion of other hidden line algorithms and 

an excellent book on computer graphics in general, refer to the 

book Principles of Interactive Computer Graphics (12). A detailed 

study of hidden line algorithms can be found in an article entitled 

"A Characterization of Ten Hidden-Surface Algorithms" (13) . A new 

hidden line algorithm just released by Hedgley (9) which was 

developed at NASA, claims to be the most robust approach and 

complete general solution to the hidden line problem. 

Shading 

The realism of an image generated by computers depends not on 

just the hidden lines and surfaces being removed but on shading 

effects as well. Once the hidden surfaces are removed, the colors 

and their intensities are computed for the remaining surfaces and 

displayed.  In Figure 3, region 1 and 4 would be the background color. 

Region 2 would be shaded according to the parameters for polygon A. 

Region 3 would be shaded according to the parameters for polygon B. 

The shading effect for MOVIE.BYU is adjusted by the following 

parameters: 

1. Regular light intensity - represents the color of the 
object and its general brightness. 

2. Highlights - provides bright areas on the model 
caused by portions of the reflected light being 
indirect or nearly direct in line with the eye. 
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3. Single light source - can be set at any arbitrary 
distant position. 

4. Diffused value - if a lighted side is such that it 
can not be seen (i.e., it's shade would match the 
background), one can Increase its intensity by setting 
the amount of diffused light emitted by such a part. 

MOVIE.BYU can generate three distinct types of shading. 

Figure 4 shows a curved surface approximated by 4 quadrilateral 

elements. The single head vectors at the comers are the normals 

to the surface at these corners. Flat shading calculates the 

corner intensity values using these normals.  This produces the 

effect of distinct, polygons, but does allow the variation of color 

over the polygon. 

The single headed vectors at the center of each element are 

the average of the corner normal vectors. Uniform shading uses 

those vectors and thus color and intensity would be uniform over the 

element. 

Smooth shading uses the double headed vectors at the nodes 

which represent the average of the element normals at the node. 

This allows variation of light intensity and color over the element, 

but guarantees continuity at the element boundaries. 

MOVIE.BYU uses a shading technique developed by Gouraud (8). 

This algorithm assumes that light intensity varies linearly between 

any two points on the element boundaries.  The flat and smooth 

shading feature of MOVIE.BYU uses this technique. 

Advanced shading techniques such as transparency, shadow 

casting, surface texture and surface features are available in other 
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^ Light Source 

Figure 4 

Normal Vectors on a Curved Surface 
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programs. Extremely realistic images that are difficult to dis- 

tinguish from photographs can be generated with these techniques. 

An overview of shading techniques is discussed in the book 

Principles of Interactive Computer Graphics (12). 
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CHAPTER IV 

DEVICE DRIVER DESCRIPTION 

In order to write the device drivers for the VS11 color 

terminal two problem areas had to be mastered. First, an under- 

standing of the VS11 and its command structure was required. This 

was accomplished by reading the programmer section of the VS11 

users manual (6). This manual gives an opaque and highly technical 

description of the command structure. Fortunately, a VS11 demo 

program (SAMPLEF.FOR) supplied by Digital Equipment Corporation 

demonstrated how some of the commands operated. Between the two 

sources and much experimentation, an adequate understanding of 

the VS11 command structure was acquired. 

The second problem area and an even more obscure one was the 

question of which graphic functions were needed and how to inter- 

face them with MOVIE.BYU. The two modules which required modifica- 

tion were COMMAND.FOR and DEVICE.TK4. COMMAND.FOR is a very 

large problem of approximately 7200 lines and DEVICE.TK4 is 

approximately 2700 lines of comments and Fortran code. DEVICE.TK4 

had to contain the main initialization and device driver routines 

for the VS11 and was renamed DEVICEVS.FOR. Device driver sub- 

routine calls were added to COMMAND.FOR. The latter also 

required some restructuring of its subroutines and was renamed 

COMMANDLU.FOR. Since these programs are so large, they are not 

-16- 
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Included In this paper but are available for inspection either in 

the office of Professor Samuel L. Gulden or at the Mechanical 

Engineering Computer-Alded Design Laboratory at Lehigh University. 

The initialization of the VS11 can be found in the subroutine 

VS_INIT in DEVICEVS.FOR. First, the required common blocks and 

declarations of variable types are declared. A check is then made 

to insure that the users terminal is a VS11 terminal and that it has 

been assigned to the VS11 system channel. If not, an error is 

displayed and the program is terminated. To make this assignment, 

the VAX/VMS command ASSIGN VS_0 VS11 is issued before the program 

is run. The _ represents the letter designation of the specific 

users terminal (A, B, C, D, E, or F). 

The system variables are then defined. The variable Dl sets 

the location of the starting address of the main VSll segment which 

is defined in the MACRO program VSA32768. This program reserves a 

32K area for the display file and page aligns it. D2 is the start- 

ing address of the status block in the VAX. D3 is the starting 

address of the AUXILIARY segment which is defined in the MACRO 

program ASCII (the commands for the ASCII character set). AUXLNG 

sets the size of this AUXILIARY segment.  IO_START, IO_READSTATUS, 

IOJWAITSWITCH and IO_RESUME are used by the VSll driver to perform 

I/O operations. 

The opcode mnemonics for the bit patterns, in octal format, 

that are necessary for the display file commands are defined in 63 

assignment statements. 

-17- 
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The possible color combinations are defined next. The bit 

patterns for all 16 possible colors are defined in the array OPCDS. 

The 16 colors are displayed in groups starting with black and con- 

tinuing with shades of green, blue, red, and purple, and ending with 

white. The array CCDS contains the 4 bit representation of these 

colors, they are arranged in the four color groups (green, blue, red 

and purple) with black and white appended to each group. Five shades 

of green and purple and six shades of blue and red are generated. 

These are the "pure" colors that can be displayed by the VS11. 

These colors are then blended together to form intermediate shades. 

After all the variables are defined, a call is made to VS_CLEAR. 

This subroutine clears the VS11, both the VT100 and the graphic 

portion, as well as the image memories and monitor. The following 

action is performed: 

DSLING - 1 
CALL DSSET (LSTC.0R.CHAN3.0R.IM_RD.0R.IM_WRT) 
CALL DSSET (LSTC.0R.CHAN2.0R.IM_RD.0R.IM_WRT) 
CALL DSSET (LSTC.0R.CHAN1.0R.IM_RD.0R.IM_WRT) 
CALL DSSET (LSTC.OR.IM_RD.OR.IM_WRT) 
CALL DSSET (UNBLINK) 
CALL DSSET (LAS.OR.CLEAR) 
CALL VS_IO (I0_START,D1, ZERO) 

The display file pointer, (DSLING), is set equal to 1. Each 

call to DSSET loads the bit pattern sent to it into the display file 

at location DSLING. DSLING is then incremented. The instruction 

LSTC sets the status register C to the channel selected, i.e., 0 to 3 

(four channels are available in this system, but normally only one is 

used) and enables the channels for reading and writing. 

-18- 
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The command UNBLINK turns off the blinking feature. The 

command LAS.OR.CLEAR loads the status register A with a stop command 

and clears the image memory. 

At this point the display file would have six entries. No 

action is taken by the display processor until the VS_IO call is 

given. The VS_IO call tells the display processor where in memory 

the display list is located, which VS11 channel to use, sets the 

status register locations and then executes the display list through 

the LAS instruction. At that point the screen and image memory 

are cleared. 

A debugging feature has been added to the program. If the 

variable DEBUG is set to .TRUE., a file is printed to list the 

display file location, bit pattern in octal and most of the 

corresponding mnemonics. A sample debugging output for the above 

instructions is presented: 

Length of Display File ■» 6 

LSTC 
LSTC 
LSTC 
LSTC 
UNBLINK 
LASCL 

Line Drawing 

The basic type of output that MOVIE.BYU creates is a line. 

The subroutine LINETO and MOVETO of DEVICE.TK4 are the appropriate 

draw and move routines for the Tektronix 4027 terminal. The 

-19- 
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subroutines LVDRW and LVMOV, which draws a line between two end 

points and which moves the graphic cursor, respectively, mimic the 

4027 subroutines. These subroutines are called in COMMANDLU in 

the routines PLTIN and LABELS. The latter routines had to be 

modified in order for the calls to be valid. 

It should be noted that all modifications to MOVIE.BYU were 

done in a manner that did not interfere with the operating structure 

of the other devices that MOVIE.BYU supports. Thus, if a 4027 

terminal is available, the program will run properly using it. 

The simple box drawing (Figure lb) demonstrates the line draw- 

ing capability, and would generate a display file with 34 entries 

(Table 1). The first entry would clear the screen. An absolute 

point command is then given to location x =» 0, y =» 0 to establish a 

reference point. The lines are drawn in terms of "long" vectors. 

The "long" vector mode is specified and then all data entered into 

the display file would represent "long" vectors. The "long" vector 

commands require the next 2 display file entries to represent the 

change in x direction and change in y direction, respectively. If 

the 5th octal digit (from right to left) is a 6 or a 4 the line will 

be drawn. If it is neither 6 or 4, it will not be drawn and the 

command acts as a move. To draw the 7 lines of Figure lb requires 

7 draw commands plus 7 move commands; a move being issued before 

each draw. Finally the LAS command is given to indicate the end 

of the display file. 
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Length of Display File = 34 

1 170140 LSTACL 
2 114000 ABSP 
3 0 DATA 
4 0 DATA 
5 113700 LVECCOL 
6 1426 DATA 
7 1512 DATA 
8 60624 DATA 
9 10 DATA 

10 20142 DATA 
11 20116 DATA 
12 40142 DATA 
13 116 DATA 
14 20142 DATA 
15 21126 DATA 
16 40000 DATA 
17 1010 DATA 
18 766 DATA 
19 21116 DATA 
20 40000 DATA 
21 1222 DATA 
22 20624 DATA 
23 21234 DATA 
24 60142 DATA 
25 116 DATA 
26 142 DATA 
27 20116 DATA 
28 40000 DATA 
29 1244 DATA 
30 0 DATA 
31 21244 DATA 
32 40624 DATA 
33 12 DATA 
34 173400 LAS 

TABLE 1 

Display File Entries for Figure lb 
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Text 

MOVIE.BYU has the ability to number the polygons and their 

nodes.  In order to implement this feature on the VSll, it was 

necessary to be able to put characters in the display file. Thus, 

subroutine VS_TEXT in DEVICEVS was created and subroutine LABELS 

had to be modified. 

In subroutine LABELS the graphic cursor is first moved to the 

desired position with a LVMOV call. Since the characters that would 

be sent for display are numbers up to five digits long, they are 

kept in an array and passed along with a count of the number of 

digits to VS_TEXT. The current location of the graphic cursor is 

then moved to account for the displacement which occurred by 

printing the number. 

Subroutine VS_TEXT sets up the display processor for character 

entry by issuelng character Initialization commands to the display 

file. They set the character base to the AUXILIARY segment where 

the character structure is stored and activates the character mode. 

This will assume that until another control opcode is encountered, 

all further entries in the display file consists of character data. 

The subroutine then- examines each character and zeros out all bits 

of index greater than seven. Since each display file entry can 

handle two characters (16 bits), the digits are loaded in pairs into 

the display file. Moreover, if the number of characters was odd, 

a space is added after the last digit. 
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Color 

With the VS11 being a color display terminal, MOVIE.BYU should 

use all of the terminal's capability. A limitation of MOVIE.BYU 

was that in the line drawing mode, it was not possible to specify 

the color in which lines would be drawn. For a model composed of 

one part, this is not a serious limitation. If a model is made up 

of many parts (MOVIE.BYU is currently dimensioned for 20 parts, but 

can be increased), it would be good, for clarity purposes, to 

display them in different colors. 

Since the VS11 is only a 16 color display, rather than specify 

the colors as some form of red, blue and green combination, it is 

possible to display the 16 colors on the monitor and choose one 

of them by number. Subroutine VS_C0L0R in DEVICEVS displays the 

possible VS11 colors with one of the numbers 1 through 16 under 

each color. 

The VS_C0L0R subroutine places the 16 possible colors across 

the top of the monitor. This is done by creating 16 horizontal 

histograms, 50 x 50 pixels in size, and filling them with each of 

the 16 colors. By using the long vector commands a white border is 

then placed around the histograms for clarity. The sixteen color 

histograms are number 1 to 16 by using calls to VS_TEXT. The VT100 

portion of the display is advanced 5 lines down from the top of 

the screen so that all prompts appear below the color display. 

The user of the program has the option of specifying color 

for various parameters in the display of the object. They are; 
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the border placed around the display, the coordinate axis or triad, 

the background of the display, and the model itself. The display 

of the border and coordinate triad are optional, but if either is 

used its color specifications are selected in subroutine SCOPE of 

COMMANDLU.  If the border or coordinate triad are to be displayed, 

the color selection chart is first displayed and a choice of 

color is made. The variables BDKILL and 1KILL equal zero if the 

border and coordinate axis are to be displayed and equal to one if 

not. The appropriate code, representing the color for the display 

file, is stored in BDCOL and TRDCOL, respectively. Since the border 

and coordinate axis will be drawn with long vectors after the model 

is displayed, the color specification for these vectors is the only 

information required. 

Subroutine COLO of COMMANDLU chooses the color for the back- 

ground and for each part that comprises the model. First, the 

user has the option of leaving the background black; in that case 

the variable BGKILL would equal one. If the user chooses a color 

for the background, BGKILL would equal zero. The color selection 

chart is again displayed and a choice of color is requested (a value 

from 1 to 16 is chosen). The appropriate code for the diaplay file 

is stored in BGCOL. 

The above procedure is followed for all the parts that make up 

the model.  Initially, the parts are set to white in the storing 

array PATCOL. If any part is to be drawn with a different color, 

the appropriate color display code is stored for that part in PATCOL. 
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This completes the color requirements for the display of a 

model in line drawing mode, with or without hidden lines removed. 

All the required parameters have been defined because the model is 

drawn as a collection of vectors and their appropriate colors 

have been specified. 

Under the current operation a model composed of more than one 

part would be displayed in the following sequence. First the 

background is colored by filling the screen with the chosen color. 

This is done by using horizontal histograms to the height of the 

screen. Next the model is drawn one part at a time with each 

part drawn in the chosen color. Finally the border and coordinate 

triad are drawn. This sequence occurs so quickly that the completed 

screen appears to be drawn at once. ' A problem occurs if the hidden 

line removal feature is used.  Since the parts are no longer 

considered separately, and the visible line segments are drawn in 

a top to bottom manner with no regard as to which part they belong; 

the complete model is drawn in the color of the last part specified. 

Patterning 

To display the model with a shaded colored surface requires a 

completely different set of color specification descriptions. With 

a 16 color display only 3 shades of green, 4 shades of red and blue, 

and 3 shades of mixed color (purplish) are possible.  If a model is 

to be shaded blue, the 4 available shades will cause the model to 

appear almost flat and it would be extremely difficult to determine 
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what the object was supposed to be. In order to achieve realism, 

a blending of the available shades into additional shades in a 

patterning effect is required. Once this patterning scheme was 

created, the next problem was interfacing it to MOVIE.BYU. 

In determining a patterning scheme, three goals were considered: 

1. To simulate at least 256 colors. Since the 
shading information in MOVIE.BYU is presented 
in the form of 256 possible values for the 3 
primary colors an ideal patterning effect 
should simulate these. 

2. To limit the grainy appearance of the image. 
A pronounced pattern detracts from the sharpness 
of the picture and gives it a diffused and 
grainy appearance. 

3. To make the patterning algorithm as efficient 
as possible. The patterning algorithm would 
have to be executed 512 x 480 = 245,760 times 
just to display one picture. 

For practical reasons of resolution it is necessary to compromise 

between the first two goals. The more colors required, the 

greater the patterning and the grainier the appearance. 

Table 2 organizes the possible VS11 colors into 4 color 

groups: green, blue, red and purple. White and black were appended 

to each group thus adding two more shades to them. This created 

22 possible colors. Table 3a shows the first patterning scheme 

that was tried. As an example, the two colors black and dark 

green were chosen. An area of the model that would be shaded a 

certain color would be at least a few pixels wide. If an area were 

shaded color 1, the first 6 pixels would be: dark green, black, 

black, dark green, black, black. This pattern would be repeated 
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Table 2 

VS11 Color Groups 

Green Shades 

black  dark green 

Blue Shades 

black  dark blue 

Red Shades 

black  dark red 

Purple Shades 

black  dark purple 

medium green   light green   white 

medluml blue   medium2 blue  light blue white 

mediuml red    medium2 red   light red  white 

medium purple  light purple  white 

Example: 

Black 

BBB 

Table 3a 

3 Group Patterning Scheme ■ 58 Colors 

1 

GBB 

2 

GGB 

Dark Green 

GGG 

Table 3b 

4 Group Patterning Scheme = 76 Colors 

Example: 

Black 1 2 3 Dark Green 

BBBB GBBB GBGB GGGB GGGG 

-27- 



www.manaraa.com

for any area of the model colored in this shade. The added colors 

1 and 2 are introduced between each pair of "pure" colors, this 

yields 13 shades of green and purple, and 16 shades of red and blue. 

The "grainyness" of the final picture is very slight and if the 

monitor is viewed from a few feet away the patterning disappears 

and the various areas appear to be shaded in new colors. This 

still did not provide enough shades for a realistic picture. 

Table 3b shows the pattern for a 4 pixel group. This pattern 

would generate 3 points of the same color together and is noticeable 

as a stripe in the pattern. This scheme still provides a reasonable 

texture when the model is viewed from a distance of a few feet. 

The additional shades, 17 of green and purple, and 21 of red and 

blue, give the model an aspect of realism which is an improvement 

over the scheme of the 3 pixel grouping. 

Any additional increase in the patterning would be too 

objectionable when viewed in a normal manner. Thus, the 4 pixel 

grouping was decided upon and implemented. 

Implementation 

The implementation of this patterning technique required the 

modification of two subroutines and a creation of a third. Subroutine 

COLO in COMMANDLU was one that had to  be modified. The variables that 

were defined for the color selections in the line drawing mode are not 

used in the shading mode. In the shaded mode it is necessary that 

the color parameters be specified as integers between 0 and 255 
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for each of the primary colors (green, blue and red). Therefore, 

the chosen colors had to be translated Into this format. 

A color would be defined as being a certain shade if its 

value (0-255) was less than or equal to a defined subdivision in 

this range. Table 4a shows the subdivision points for the green, 

blue and red colors. The numbers with the * symbol above them 

represent the "pure", unpatterned VSll colors. Therefore, 

the integers defining the "pure" colors would be stored when 

the color of the model was chosen. Table 4b shows the "pure" color 

values that would be used for the chosen VSll colors. They are 

located in arrays GCD and R3CD. 

In the background color selection, if medium green is chosen, 

the following variables would be set as Indicated: IC1 *» 134 (green), 

IC2 ■ 0 (blue) and IC3 -  0 (red). The variable values are then 

stored in one integer (IPB - IC1 * 2 ** 16 + IC2 * 2 ** 8 + IC3). 

In color selection for the parts of the model, the highest value 

in the chosen color group is taken. This is done so that the shading 

of the model will vary over the total range of possible shades. 

Thus, if medium green is chosen for the model; IC1 ■» 194, IC2 = 0, 

IC3 «= 0. These values are stored in ICC which is defined in the 

same manner as IPB. 

Subroutine SRL in DEVICEVS contains the general shading algorithm. 

It evaluates the shading information for the visible segments and 

then calls the appropriate routine for output. In order to implement 
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Table 4a 

Primary Color Subdivision Scheme 

Green   GDIV 

* * * * 

14, 29, 44, 59, // 74, 89, 104, 119 // 134, 144, 164, 179, // 194 

209, 224, 240 // 

Red and Blue   RBDIV 

* * * * 

12, 24, 36, 49 // 61, 73, 85, 98 // 110, 122, 134, 147 // 159, 171 

183, 196 // 208, 220, 232, 245 // 

Table 4b 

Pure Color Designations 

Green 

0, 74, 134, 194, 240 

Red and Blue 

0, 61, 110, 159, 208, 245 
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SRL, an appropriate insertion of a call to VS_SRL was required. 

The latter subroutine is the subroutine that drives the VS11. Data 

is output to VS__SRL one complete scan line at a time with the 

values of the green, blue and red component for each of the 512 

pixels being passed in integer arrays. 

Subroutine VS_SRL takes the separate green, blue and red 

values and translates them into a single 4 bit color value, its 

"pure" color. It also calculates which, if any, patterning effect 

should be applied. 

The following Fortran code accomplishes this: 

OCTAL VALUES DEFINED IN INIT FOR CCDS 
CCDS/0,4,10,14,17,0,1,5,11,15,17,0,2,6,12,16,17,0,3,7,13,17/ 

PIXLVAL=0 
DO 249 P01,512 

DO 210 1-1,16 
IF(LGREEN(PC).LE.GDIV(I))THEN 
PIXLVAL=CCDS((1+3)/4) 
PTRN(PC)«IM0D(I-1,4) 
GOTO 220 

END IF 
210   CONTINUE 

PIXLVAL-15 
PTRN(PC)=0 
GOTO 245 

220   DO 230 1=1,20 
IF(LBLUE(PC).LE.RBDIV(I))THEN 
PIXLVAL=PIXLVAL.OR.CCDS((1+23)/4) 
PTRN(PC)=IMAX0(PTRN(PC),IM0D(1-1,4)) 
IF(PIXLVAL.EQ.15) THEN 
PTRN(PC)=0 
GOTO 245 

END IF 
GOTO 235 
END IF 

230   CONTINUE 
PIXLVAL=15 
PTRN(PC)=0 
GOTO 245 
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235   DO 240 1=1,20 
IF(LRED(PC).LE.RBDIV(I))THEN 
PIXLVAL=LIXLVAL.OR.CCDS((I+47)/4) 
PTRN(PC)=IMAXO(PTRN(PC),IMOD(I-l,4)) 
IF(PIXLVAL.EQ.15) PTRN(PC)=0 
GOTO 245 

END IF 
240   CONTINUE 

PIXLVAL=15 
PTRN(PC)=0 

245 DO 246 INDX-1,22 
IF(PIXLVAL.EQ.CCDS(INDX)) THEN 
SLDATA(PC)=INDX 
GOTO 249 

ENDIF 
246 CONTINUE 
249 CONTINUE 

Array GDIV and RBDIV are the subdivision points from Table 4a. The 

array CCDS is included for clarity and shows the octal definition 

of the "pure" colors. The green value (LGREEN(PC)) for each pixel 

is compared to the GDIV array to find the subdivision point. When 

found, the appropriate color code is stored in PIXLVAL (PIXLVAL^CCDS 

((I + 3)/4)). The pattern code (0, 1, 2, or 3) is then computed as 

(PTRN(PC)=IM0D(I-1,4)). 

The blue PIXLVAL component (LBLUE(PC)) is logically OR'ed to 

the previous value of PIXLVAL. The variable PTRN(PC) is the maximum 

patterning effect due to the green and blue components and is then 

computed as (PTRN(PC)=IMAXO(PTRN(PC),IM0D(I-1,4)). 

The red PIXLVAL component (LRED(PC)) is logically OR'ed to the 

value of PIXLVAL already defined. The maximum PTRN is computed again. 

Finally, SLDATA(PC) equals the index value of the CCDS array 

that would create the defined PIXLVAL. The index rather than its 

value is used so that the pattern effect can easily be computed. 
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The next step is to load the display file with the appropriate 

commands for displaying pixel data and this is followed by the 

loading of the pixel data itself. The following display file 

commands are called for each sran line: 

CALL DSSET (ABSP) 
CALL DSSET (0) 
CALL DSSET (958-SCAN_LN) 
CALL DSSET (BMP1) 
LOC - (DSLING - 1) * 2 
CALL DSSET (LOC + 6) 
CALL DSSET (DJMP) 
CALL DSSET (LOC + 262) 

These commands are described as follows: The graphic cursor 

is set to the top left hand corner of the monitor (Note: 958 - scan 

line 459) and the Bit Mapped mode is called. The address of the 

data in Display List is then specified. Finally, a jump command 

to the next location after the end of the data is issued. All 

numbers have to be specified at twice their value, thus, as each 

scan line is processed, the variable scan line is incremented by 

two. The data for the pixel colors are loaded into a 16 bit word, 

4 bits at a time, thus, a 512 pixel display would require 128 

16 bit words. 

The physical display time requirements and the length of the 

display file determine how many scan lines are calculated before 

being displayed. An average image with the VAX dedicated to a 

single user would require approximately 2 minutes to display. 

It is psychologically better to  have the picture appear in small 

segments than to stare at a blank monitor for 2 minutes. The 
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display file is currently set to display 60 scan lines at a time. 

This implementation keeps the display file well within the 32K 

maximum size. 

The following Fortran code to implement the patterning and to 

pack the display file is presented: 

DO 250 K-l,512,4 
COLOR=0 
DO 275 LOOP-1,4 

INX=(K+L00P-1) 
CB»SLDATA(INX) 
IF (PTRN(INX).EQ.O)THEN 

ITEMP=CCDS(CB) 
ELSE IF (PTRN(INX).EQ.1)THEN 

IF(ROTATE(PTRN(INX),CB).EQ.0)THEN 
ITEMP=CCDS(CB+1) 

ELSE 
ITEMP»CCDS(CB) 

ENDIF 
ROTATE(PTRN(INX),CB)=IM0D(ROTATE(PTRN(INX),CB)+1,4) 

ELSE IF (PTRN(INX).EQ.2)THEN> 
IF(ROTATE(PTRN(INX),CB).EQ.O.OR. 

R0TATE(PTRN(INX),CB).EQ.2)THEN 
ITEMP=CCDS(CB+1) 

ELSE 
ITEMP-CCDS(CB) 

ENDIF 
ROTATE(PTRN(INX),CB)»IMOD(ROTATE(PTRN(INX),CB)+1,4) 

ELSE 
IF(ROTATE(PTRN(INX),CB).EQ.3)THEN 

ITEMP-CCDS(CB) 
ELSE 

ITEMP=CCDS(CB+1) 
ENDIF 
ROTATE(PTRN(INX),CB)=IMOD(ROTATE(PTRN(INX),CB)+1,4) 

ENDIF 
ITEMP=ISHFT(ITEMP,(L00P-1)*4) 
C0L0R=C0L0R.OR.ITEMP 

275   CONTINUE 
CALL DSSET(COLOR) 

250 CONTINUE 

Thus: the 512 pixels of the scan line are loaded into the display 

file 4 pixels per word. CB equals the appropriate index value of 
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the color code array. If the plxal to be displayed was a "pure" 

color, then no patterning Is required (PTRN(INX)=0), and the pixel 

code is loaded into ITEMPi(ITEMP=CCDS(CB)). ITEMP is then shifted 

the correct number of bits for its proper placement into the 16 bit 

word (lTEMP=ISHFT(ITEMPj(L00P^l)*4), and logically OR'ed with the 

variable COLOR. When all 16 bits are defined in COLOR, they are 

stored in the Display File (CALL DSSET (COLOR)). 

If patterning is required, the following is done: a two 

dimension array variable ROTATE(PTRN(INX),CB) is evaluated to choose 

the proper color to be assigned. ROTATE stores the number of entries 

into each type of pattern. The first time a specific pattern is 

accessed, ROTATE-0 and the color representing the first bit is sent 

to ITEMP. ROTATE is then incremented. The next access to that 

pattern would generate the color specified by the second bit in that 

pattern. ROTATE is incremented again. This is repeated for each 

access to that specific pattern with ROTATE having the possible 

values 0, 1, 2, or 3. 

For example, when PTRN - 2, the bit pattern GBGB from Table 4b 

is specified. For the first entry into this shade, ROTATE - 0 and 

ITEMP = CCDS(CB+1). Note that the "pure" color for this group would 

be black and CCDS(CB) would equal black. Therefore, CCDS(CB+1) 

would be dark green. ROTATE is incremented to 1. The next entry 

would generate a black color (CCDS(CB)). Therefore, when ROTATE » 0 

or 2, dark green is output, otherwise black is output. 
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The Images created from generating shaded color pictures on 

a 16-color display is available for viewing in the Mechanical 

Engineering Computer-Aided Design Laboratory at Lehigh University. 

For a truly realistic image, however, the 76 simulated colors are 

not enough and a 256 color display is required. 
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CHAPTER V 

UNIGRAPHICS FINITE ELEMENT MODULE TO 

MOVIE.BYU INTERFACE 

To allow MOVIE.BYU to display models created on the Unlgraphlcs 

Design System an Interface program was written (UGFEMBYU). The 

output from the finite element module is stored in a files-11 

formatted file on the VAX 11/780. The interface program reads 

this file, converts the data to the proper form for MOVIE.BYU, names 

the resultant file, and stores it on the VAX 11/780. An understanding 

of the structure of MOVIE.BYU1s input specifications and data 

structures, as well as the Unlgraphlcs element description and data 

structure, was demanded in order to convert the Unlgraphlcs format 

to the MOVIE.BYU format. 

MOVIE.BYU Geometric Input Requirements 

MOVIE.BYU will accept the geometry of an object defined in 

terms of N-sided polygons. Figure 5 shows a 3-dlmensional surface 

in space. It contains 4 polygons numbered within a circle. The 

nodal points that comprise these polygons are numbered in a counter- 

clockwise order around it. For polygon 1 the node numbers would be 

1, 2, 5 and 4. The data structure of this surface would comprise 

a list of x, y and z coordinates defining each node (coordinate 

array) and a list of edges (connectivity array) that make up the 
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Figure 5 

Three-Dimensional Surface in Space 
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Table 5 

Coordinate and Connectivity Array Definition 

Coordinate Array 

Node Number  x    y 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.0 2.0 30.0 

8.0 4.0 20.0 

20.0 3.0 25.0 

5.0 11.0 25.0 

10.0 15.0 28.0 

18.0 12.0 22.0 

3.0 35.0 27.0 

12.0 40.0 20.0 

22.0 33.0 22.0 

Connectivity Array 

Element Number    Node Number 

1 1 
2 
5 
-4 

2 2 
3 
6 
-5 

3 4 
5 
8 
-7 

4 5 
6 
9 
-8 

-39- 



www.manaraa.com

polygon. Table 5 shows how the coordinate array and connectivity 

array would be defined for Figure 5. Note that the last entry in 

the connectivity array for each element is a negative number. This 

signifies that all nodes on the perimeter of the element have been 

defined. 

Certain control variables also had to be defined. These are: 

the number of parts comprising the model (NP =» 1), the number of 

nodal coordinates (NJ =9), the number of elements (NPT = 4), and 

the number of entries in the coordinate array (NCON B  4*4 = 16). 

Finally, the parts array had to be defined since a model can be 

composed of more than one part. A lower element number and an 

upper element number can define the continuous element connectivity 

that makes up the part. In the above example there is one part 

ranging from elements 1 through 4. 

Specifically, the geometry of the model is read into MOVIE.BYU 

with the following Fortran statements: 

READ (IUNIT, 120) NP.NJ,NPT,NCON,NTEST 
READ (IUNIT, 120)((NPL(I,J),I+1,2),J=1,NP) 
READ (IUNIT, 130)((X(I,J),I=1,3),J=1,NJ) 
READ (IUNIT, 120)(IP(I).I-I,NCON) •-■' 
120 FORMAT (1615) 
130 FORMAT (6E12.5) 

The variables are defined as follows: 

NP = the number of parts 
NJ = the number of nodes 
NDT = the number of elements or polygons 
NCON = the number of entries in the connectivity array 
NTEST » a format test variable (must equal 0) 
NPL = the parts array 
X = the coordinates of the nodes 
IP = the connectivity of the elements 
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Therefore, the interface program UGFEMBYU writes the data out in 

this format. 

Unigraphics Output Specifications 

There are six basic types of elements that are used in creating 

a finite element mesh on an object. The 2-dimensional elements are 

the triangle and the quadrilateral (Figure 6). These are 3- and 

4-noded structures that are used if only a surface definition of a 

model is required.  This is a sufficient condition for displaying a 

model with MOVIE.BYU since the viewable object is totally defined 

in terms of polygons. 

This type of finite element mesh is not as useful, from an 

engineering point of view, as when the model is defined in terms of 

solid volume elements. The volume definition is required for many 

mechanical engineering analysis programs and is the one that is used 

most often. Therefore, the 3-dimensional elements wedge, box, 

wedge with interior midpoint nodes (wedge M), and box with interior 

midpoint nodes (box M) (Figure 6) had to be handled in the conversion 

process. 

The output of the finite element module is described by the 

following: 

"title", application name, part name 
"nodes", number of nodes 
node label, node property ID, restraint list, x,y,z 

coordinates 
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2 1 

Two-Dlmensional Elements 

Three-Dimensional Elements with No Interior Nodes 

Three-Dimensional Elements with.Interior Midpoint Nodes 

Figure 6 

Valid Element Types 
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"elements", number of element types, total number of elements 
element name, number of elements of this type, number of 

lines composing the element, number of boundary points 
element label, element property ID, node label, ... 

The element name section Is repeated for each element type. 

Conversion Program 

The conversion program has to read the parts in the above format. 

If the data is composed of 2-dlmensional elements, it is directly 

converted into MOVIE.BYU format. If the data consists of 3-dimensional 

elements, two additional processes have to occur. In the case of 

wedge M and box M elements, the midpoint nodes are discarded, and 

their coordinate definitions are not used. Therefore, these elements 

are effectively converted into simple wedge and box elements. 

Finally, the wedge and box elements are broken into their 

corresponding quadrilateral surfaces.  For Figure 6, the quadri- 

laterals generated are defined by their nodal points as follows: 

Wedge Elements Box Elements 

1. 1,2,3 1. 1,2,6,5 
2. 4,5,6 2. 4,3,7.8 
3. 2,5,6,3 3, 1,2,3,4 
4. 1,4,6,3 4. 5,6,7,8 
5. 1,2,5,4 5. 2,3,7,6 

6.  1,4,8,5 

This method creates a large number of polygons, many which are 

not on the surface and thus cannot be displayed. Currently MOVIE.BYU 

can handle models composed of 3000 polygons. However, it is very 
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inefficient to be required to apply the Hidden Line Removal algorithm 

to polygons that are known not to be visible. 

Figure 7, shows a typical block structure of a model. Quadri- 

laterals 1, 2, 3, and 4 are on the interior of the model and should 

not be passed to MOVIE.BYU since they would add no new information. 

The edges that define them are calculated from the remaining visible 

polygons and there is no need to calculate edges of polygons that 

would contribute no new visible edges. The program that accomplishes 

this interface and a detailed description of its operation follows. 

Implementation 

The program UGFEMBYU first initializes the variable limits for 

the sizes of the arrays. An input file can have as many as 7000 

nodes, but the output file for MOVIE.BYU can only have 3000 nodes 

and 3000 elements. Since interior nodes on an input file are 

removed, this ratio is reasonable. 

Two temporary arrays are created and initialized to zero. The 

array VALNODE is indexed by the node label. This is necessary since 

the nodes are hot always presented in a consecutive numerical order, 

the latter being a requirement of MOVIE.BYU. The array N0DENUM is 

also indexed by the node label and holds a 1 in its first position if 

the node is used in the element connectivity array. Since the midpoint 

nodes are not used, their position in NODENUM is left equal to 0 and 

are thus not passed to MOVIE.BYU. The second position in NODENUM 

will be the new number that the node will have in MOVIE.BYU. It is 
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Figure 7 

Interior Quadrilaterals from a Box Element Structure 
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created when all Interior nodes are selected and the resultant node 

list is numbered consecutively starting at 1. 

1ST0R (J,I) Is the array for storing the element connectivity, 

it Is indexed by the element number and lists the node numbers that 

comprise its connectivity.  It is initialized to 0. 

After the nodes are read and stored, the number of element types 

(NETYP) is read and the total number of elements comprising the 

model (NPT) is read. Next, for each type of element, the number of 

elements in this group (NE) and the number of nodes that characterize 

this group of elements (NBPTS) is read. 

If the number of nodes that comprise the element equals 15, 

then it is a wedge M element and only the first six nodes are 

significant and are read. NBPTS is set equal to 6 and the rest of 

the record is flagged not to be read (SKIPREC =1). If NBPTS 

equals 20, then a box M element is represented and only the first 8 

nodes are significant, NBPTS is set equal to 8, and the rest of the 

record is not read (SKIPREC -  2). 

If NBPTS is less than 5, the polygons can be read and stored 

immediately.  IEL equals the polygon number and ISTOR (1,IEL) would 

be equal to one more than the number of nodes defining the polygon. 

The node numbers defining the polygon would be stored from position 

2 on. NODENUM (1, ISTOR (J,IEL)) would equal 1, since every node 

read is contributing node to the connectivity and must be flagged in 

NODENUM. 
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If NBPTS » 6, the wedge elements are read. Each element Is 

divided Into two 3-noded elements and three 4-noded elements. As will 

be seen later, It Is Important to store all the 4-noded elements 

from wedge type, as well as from box type elements together. To 

accomplish this, a Boolean variable, FLAG8, is used. If FLAG8 is 

true, then 4-noded elements have been entered and the new 4-noded 

elements created are stored first followed by the storage of all the 

3-noded elements.  If FLAG8 is false, the opposite will happen, with 

the triangle elements being stored first and the quadrilateral i. 

elements next. The location for the storage of these elements is 

computed in IEL3 and IEL4. 

The wedge elements and their connectivity are read into a 

temporary array (EL). The appropriate flags are set in NODENUM 

for each active node. The triangular elements are then read into 

storage. 

The 3 quadrilaterial elements are stored in ISTOR at IEL4 to 

IEL4 + 2, in a consistent node numbering scheme. The quadrilaterials 

are numbered counterclockwise as they are viewed from the exterior 

of the element. IEL3 and IEL4 are incremented appropriately and 

the variable ELCREATE specifies that 5 elements were created from 

the 1 wedge element.  If the wedge element was really a wedge M 

element, the rest of the record is skipped (SKIPREC = 1). 

If NBPTS equals 8, then the 8-noded box elements are read. The 

8 nodes are read into EL and the appropriate NODENUM flags are set. 
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A consistent polygonal number scheme Is used to store these 6 

quadrilaterals.  ELCREATE adds 6 more polygons to the count, and 

if the original element was a box M, then the rest of the record is 

skipped. 

If any other element type is read, then an error message is 

displayed and the program terminates. Otherwise, the element 

storing procedure is repeated until all the elements and their 

connectivity is read. 

The active nodes that were stored in VALNODE are now transferred 

to X, namely the packed storage for the nodal coordinate values. 

If NODENUM (1,_) = 0, then that node x^as not used and it is skipped. 

If it equals 1, the NODECNT is incremented and NODENUM (2,_) equals 

the new node number (NODECNT). A check•is made to see if the 

maximum (NJMAX) node limit is exceeded.  If not, the coordinates for 

the nodes that were stored in VALNODE are transferred to X. 

The next step before storing the data in MOVIE.BYU format is 

to eliminate any polygons not defining an exterior surface.  The 

following Fortran code shows this algorithm: 

VARIFY UNIQUE POLYGONS DELETE IF NOT 
K = CURRENT POLYGON 
L = POLYGON TESTED AGAINST 

IF(IST0R(1,K).EQ. -1) GOTO 75 !POLYGON DELETED 
L=K 

66  L=L+1 
IF(ISTOR)l,L).EQ.-l) GOTO 66 IPOLYGON DELETED 
IF(ISTOR(l,K).NE.ISTOR(l,L)) GOTO 68   "END OF ELEMENT GROUP 
IF(ISTOR(2,K).NE.ISTOR(2,L)) GOTO 66 
IF(ISTOR(3,K).NE.ISTOR(3,L)) GOTO 66 
IF(ISTOR(4,K).NE.ISTOR(4,L)) GOTO 66 
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IF(IST0R(1,K).EQ.4) THEN 14 NODED ELEMENTS 
IF(ISTOR(5,K).NE.ISTOR(5,L)) GOTO 66 

ENDIF 
ISTOR(l,L)= -1 1FLAG TO DELETE POLYGON 
ELDEL=ELDEL+2 
GOTO 75- 

68  DO 70 J=2,ISTOR(l,K) !STORE POLYGON 
NEDGE=NEDGE+1 
JP(NEDGE)=NODENUM(2,ISTOR(J,K)) 

70  CONTINUE 
JP(NEDGE) = - JP(NEDGE) 

75  CONTINUE 
WRITE(*,450)ELDEL 

450 FORMAT('O','COMMON PLANER SURFACE ELEMENTES DELETED = ',14) 
NPT- ELCREATE - ELDEL 

Since the polygons were stored in a consistent numbering scheme, each 

polygon is compared with every other remaining polygon having the 

same number of nodes. This is done to see if the compared node 

numbering schemes are identical. For this reason all 3- and 4-noded 

polygons have to be stored together. If the node numbering is 

identical then neither polygon is required. The current polygon 

being tested is just not stored and its duplicate is flagged with 

a -1 (ISTOR(l,_) - -1) and skipped over when reference is made to it. 

ELDEL is increased by 2 to signify that two more elements have been 

selected. 

If no match is found when the end of the list or element group 

is encountered, the element is then stored in the connectivity 

array JP.  This element is stored with the new nodal index that was 

computed for it in NODENUM (2,_). Finally, the maximum element count 

is checked and if it has not been exceeded, the program prompts the 

user for an output file name of fewer than 8 characters and stores 
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the converted data on it. This terminates the program and the user 

is ready to run MOVIE.BYU. Appendix 1 shows a sample output with 

user responses that were generated when running this program. 
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CHAPTER VI 

COMMAND STRUCTURE ADDITIONS AND MODIFICATIONS 

Additions 

The commands MODE, CLEAR and PRINT were added to the existing 

commands for additional capability and ease of operation. Previously, 

to change from Line Drawing mode to Shaded Color mode required the 

issuing of the SCOPE command. This would also necessitate reentering 

various color selections and resetting parameters that have not 

changed. To avoid this, the MODE command was added. It calls sub- 

routine VS_MODE of DEVICEVS which changes the Line Drawing designation 

of the VS11 (IDVICE » -5) to the shaded color mode (IDVICE « 2) or 

vice versa, depending on the original status of the display. A 

message is printed which tells the user the current mode of the 

terminal. 

The ability to clear the screen, both the graphic and VT100 

portion, through a user command was desirable.' The command CLEAR 

was added and it calls VS^CLEAR which performs this function. 

A final feature that was desired but not implemented is the 

ability to copy the screen to a color hard copy device. The command 

PRINT was added that calls VS_PRINT. Since a color hardcopy device 

is not currently available, just the call to the appropriate sub- 

routine is provided. It shows where the screencopy routine would 

be located if a color hardcopy device was to be Interfaced to 
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MOVIE.BYU.  These commands were added to the list of active commands 

and are listed when the HELP command is issued. 

Default Values 

If an object is to be displayed in shaded color mode, many 

parameters have to be defined. Among them are: choosing the color 

of the object, the light intensity and highlight effect, the type 

of shading, the amount of diffused light emmitted, the location 

of the light source and some obscure parameters such as the setting 

of the fringe colors.  To avoid having to set all these parameters, 

when the LIGHT command is given, the first response from the user 

allows the setting of default values.  Note that the LIGHT command 

can be issued directly or, if in the shaded color mode, it is issued 

automatically when a VIEW or DRAW command is used.  If default 

values are desired then the following parameters are set: 

- the regular light exponent for all parts -  1 
- the highlight intensity for all parts =0.2 
- the highlight exponent for all parts = 1 
- the light source is set at the eye of the observer 
- the diffuse light intensity or all parts =0.2 
- the shading mode is set to flat shading 
- the standard fringe colors are set 
- the standard fringe colors are reflected about a 

"white midpoint 
- if smooth shading is requested then all parts are 

smooth shaded 

If these default values are not desired, then all the parameters 

must be entered by issuing various commands.  The choice of using 

the default values is made each time the LIGHT command is issued. 
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CHAPTER VII 

CONCLUSION 

With the modifications, enhancements and inclusion of the 

device drivers, MOVIE.BYU can be used on the present hardware. With 

the inclusion of the interface program UGFEMBYU, a model created on 

Unigraphics with a finite element mesh applied to it can be displayed 

with hidden lines removed and as a shaded colored object. 

The programs COMMANDLU.FOR, DEVICEVS.FOR, HIDDEN.FOR, 

VSA32768.MAR, ASCII.MAR, and UGFEMBYU.FOR are available for 

inspection at the office of Professor Samuel L. Gulden and at the 

Mechanical Engineering Computer-Aided Design Laboratory at Lehigh 

University. 

Appendix I shows how a complicated part is saved on Unigraphics 

and transferred by UGFEMBYU into the proper format for MOVIE.BYU. 

MANDRAL.FEM was chosen because it was created with 20 noded elements 

and would use every feature of the interface program. Figure 8 shows 

one view of the object with hidden lines removed. 

Appendix II shows how a tie :rod (TR0D.GE0), which has :been 

transferred to MOVIE.BYU format by UGFEMBYU, is displayed by MOVIE.BYU. 

A step-by-step description of the system prompts and user responses 

is included. Figure 9 shows this part as it was originally designed. 

Figure 10 shows it with the finite element mesh applied to it, wedge 

and box elements were used. Figure 11 shows the part displayed on 

MOVIE.BYU with the hidden lines removed. 
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Appendix III lists all the subroutines of MOVIE.BYU that were 

modified and those that were created. This is included so that if 

a future release of MOVIE.BYU is acquired, the areas of modification 

are identified. 

Further documentation for MOVIE.BYU is available at the 

Computer-Aided Design Laboratory under M0VIE.DOC. 
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Tie Rod Original Design 

Figure 10 

Tie Rod with Finite Element Mesh 
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APPENDIX I 

Instructions to save a part in the Unigraphics finite element 

module and convert it (using UGEEMBYU) to MOVIE.BYU format. 

Note: User responses are underlined. 

*** UNIGRAPHICS FINITE ELEMENT MODULE *** 

After finite element mesh has been applied to model 
Format  OPTION 6 
Enter GRIP source file name  MANDRAL 
FILE PART 
LOGOFF AND EXIT 
RUN UGU06 
3. Extract a Unigraphics file  _3 
5. GRIP Source Library       .5 
Give flle-11 name (new output file name)  MANDRAL.DAT 
Key in Unigraphics name (GRIP source file name)  MANDRAL 
0. Return to Unigraphics  0^ 
LOGOFF 

*** UGFEMBYU *** 

RUN UGFEMBYU 
NAME OF DATA FILE FROM UGFEM?  MANDRAL.DAT 
ORIGINAL NUMBER OF NODES - 2428 
2 TYPES OF ELEMENTS WITH A TOTAL OF 310 ELEMENTS 
THERE ARE 22 ELEMENTS WITH 15 NODES 
THERE ARE 288 ELEMENTS WITH 20 NODES 
PLANER SURFACE ELEMENTS CREATED = 1838 
UNUSED INTERIOR NODES DELETED « 1809 
NUMBER OF NODES USED = 619 
COMMON PLANER SURFACE ELEMENTS DELETED "956 
TOTAL PLANER SURFACE ELEMENTS STORED =882 
NAME OF GEOM FILE FOR MOVIE.BYU (*******.GEO)?  MANDRAL.GEO 
CONVERSION COMPLETE 
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APPENDIX II 

Example of MOVIE.BYU Operation 

Note: User responses are underlined 

RUN DISPLAY 
<MOVIE SYSTEM DISPLAY> 
<READ GEOM FILE>  TIEROD.GEO 
<READ DISP FILE>  CR 
<READ FUNC FILE>  CR 
<DEVICE>   VS11 
<LINE DRAWING OR COLOR>   L 
<SUPPRESS PICTURE BORDER?>   N 
<ENTER COLOR NUMBER>   8 (Pick color 1 to 16, 8-1t. blue) 
<SUPPRESS COORINDATE TRAID?>   N 
<ENTER COLOR NUMBER>   T_    (7-raed. blue) 
»ROTA (Rotate figure) 
<AXIS,ANGLE>   X zhl   Y 29. z 30 (Rotate X,45°;Y,30°;Z,30°) 
»DIST " 
<DISTANCE TO ORIGIN (30.27)>   18.0 (Acts as zoom, new distance 

to origin = 18.0) 
»DRAW (Draws figure with white lines, no hidden line removal) 
»VIEW (Draws figure with white lines, hidden lines removed) 
»M0DE (Changes from line drawing mode to shaded color mode) 
<SHADED COLOR M0DE> 
»VIEW (VIEW or DRAW will issue further prompts and then display 

the figure as a shaded color image) 
<DEFAULT VALUES?>   Y 
BACKGROUND BLACK?>   Y (If NO then a color can be chosen for 

the background) 
<PART 11/12,COLOR NUMBER> 
>»JL _1 9 (Chooses a color, 9°red, for each part that comprises 

the model. Parts 1 to 1 will be colored RED) 
»>CR (Ends color selection mode) 
Figure will now be displayed in shades of red. 
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APPENDIX III 

Modified Subroutines in MOVIE.BYU 

Type of changes: 

1. MAJOR   2 :.  MINOR   3 . ARRAY SIZES 

COMMAND.FOR 

Subroutine Change Subroutine 

MAIN 2,3 NORMAL 
ANIMAT 3 OPEN 
CLEAR 2,3 PAINT 
COARRO 2,3 PART 
COLO 1,3 PIVOT 
CONEL 3 POINTS 
COORD 3 POLNUM 
DIFF 2,3 POLYD 
DRAW 3 POLYV 
EDGE 3 READ 
EXPL 3 REST 
FAST 3 ROTA 
FRIN 3 SCOP 
HELP 1 SEPART 
IMMUNE 3 SHADE 
INIT 2,3 SHRINK 
INTHID 3 TRAN 
ISHADE 3 VIEDRA 
LASTC 3 VIS IP 
LIGHT 1,3 VISIT 
LINE 3 
MULTDC 3 
MULTDD 3 
NODNUM 3 
NORAV 3 
NORMI 3 

Change 

3 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
3 

2,3 
3 
3 

1,3 
3 
3 
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HI DDE IN.FOR DEVICE.TK4 

Subroutine Change Subroutine Change 

CLIP 3 BGNFRM 1 
CONSHO 3 ENDFRM 1 
DRAWIT 3 LABELS 1 
EDGMAK 3 PLTLIN 1 
GETBLK 3 SRL 1 
HIDDEN 2,3 
INSECT 3 
LINSHO 3 
LSTSET 3 
PACKER 3 
POLMAK 3 
POLSNP 3 
RETBLK 3 
UNPACK 3 

Created Subroutines in MOVIE.BYU 

DEVICE.TK4-DEVICEVS.FOR 

Subroutine 

DSSET 
LVDRW 
LVMOV 
VS_CLEAR 
VS_COLOR 
VS_INIT 
VS_MODE 
VS_PRINT 
VS_IO 
VS SRL 
VS~TEXT 
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