
www.manaraa.com

THE DISPLAY OF

COMPUTER GENERATED SHADED COLOR IMAGES FROM

POLYGON DATA AND ITS APPLICATION IN THE

MECHANICAL ENGINEERING COMPUTER-AIDED DESIGN ENVIRONMENT

by

Jan Carl Silverman

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science

Lehigh University

1982

www.manaraa.com

ProQuest Number: EP76288

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76288

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science.

•"
(date)

x Professor in Charge

s££-£s\^it.a^.,{ /KA Vv*-
Head of DJvFsfon

-ii-

www.manaraa.com

ACKNOWLEDGMENTS

I am particularly thankful to Professor Samuel L. Gulden for

his constant help and confidence. His guidance and support allowed

me to achieve the goals I had set for myself. Also his patience in

reading the drafts of this document and the comments he made were

deeply appreciated.

I would especially like to thank Professor John B. Ochs for

allowing me to do my research in the Mechanical Engineering

Computer-Aided Design Laboratory, and treating me like a student in

his department.

I would also like to thank Professor Tulga Ozsoy for the many

discussions we had on his Mandrall model, and Jim Swain who created

the Tie Rod model.

-1X1-

www.manaraa.com

TABLE OF CONTENTS

Page

Certificate of Approval ii

Acknowledgements iii

Table of Contents iv

List of Tables v

List of Figures vi

Abstract 1

I. Introduction 3

II. Description of Mardware 4

III. MOVIE.BYU Description and Theory 6

IV. Device Driver Description 16

V. Unigraphics Finite Element Module to
MOVIE.BYU Interface 37

VI. Command Structure Additions and Modifications. ... 51

VII. Conclusion 53

Bibliography 58

Appendix I Instructions to Save a Fart in the
Unigraphics Finite Element Module and
to Convert it (using UGFEMBYU) to
MOVIE.BYU Format 60

Appendix II Example of MOVIE.BYU Operation 61

Appendix III Modified Subroutines in MOVIE.BYU 62

Vita 64

-iv-

www.manaraa.com

LIST OF TABLES

Table No. Page

1 Display File Entries for Figure lb 21

2 VS11 Color Groups 27

3a 3 Group Patterning Scheme « 58 Colors 27

3b 4 Group Patterning Scheme = 76 Colors 27

4a Primary Color Subdivision Scheme 30

4b Pure Color Designations 30

5 Coordinate and Connectivity Array Definition . 39

-v-

www.manaraa.com

LIST OF FIGURES

Figure No. Page

1 Hidden Line Removal 9

2 Scan Line Intersecting Polygons A and B. . . . 11

3 Depth Representation of Segments AB and CD . . 11

4 Normal Vectors on a Curved Surface 14

5 Three-Dimensional Surface in Space 38

6 Valid Element Types 42

7 Interior Quadrilaterals from a Box
Element Structure 45

8 Hidden Line View of MANDRAL 55

9 Tie Rod Original Design 56

10 Tie Rod with Finite Element Mesh 56

11 Hidden Line View of Tie Rod 57

-vi-

www.manaraa.com

ABSTRACT

The purpose of this work is to clarify some techniques in the

generation of shaded color images on a color raster terminal. The

implementation of this capability is integrated into the existing

software at the Mechanical Engineering Computer-Aided Design

facility at Lehigh University.

The MOVIE.BYU program from Brigharo Young University, was used

on a basis for the shading algorithms. In order to display the

output from this program, device drivers were written for the

Digital Equipment Corporation's VS11 color raster terminal. The

VS11 terminal can only display 16 colors, while for realistic images

the output of MOVIE.BYU provides 256 shades of a single color.

Consequently, a blending of the possible VS11 colors in a patterning

effect was introduced into the program. In addition, to make the

complexities of MOVIE.BYU transparent to users, some of its more

general and complex features were hidden through the interfacing of

a simpler command structure.

In making these additions, major modifications were performed

on MOVIE.BYU. These modifications and the device drivers are

documented in this paper.

The Computer-Alded Design Laboratory had a need to display

models generated from the McAuto Unigraphics Design System as a

shaded color object. The data from these models could be presented

-1-

www.manaraa.com

in finite element form; i.e. three- or four-noded polygons, or six-,

eight-, fifteen-, or twenty-noded volume elements. An additional

feature of this paper is an interface program which transforms the

data in any of the above finite element forms into a polygonal

representation for MOVIE.BYU input.

-2-

www.manaraa.com

CHAPTER I

INTRODUCTION

The procedure that was developed by the author at Lehigh

University for generating a shaded color image from a geometric

model involves the following steps. A model is created on the

McAuto Unigraphics design station and a finite element mesh is

applied to it. An interface program UGFEMBYU is run to transfer

the output data from Unigraphics to a form compatible with

MOVIE.BYU.

MOVIE.BYU is then run on the VS11 color terminal. The output

is first displayed in the line drawing mode, using no hidden line

removal or shading, and oriented to its desired position. The

object is then viewed as a shaded image following a modified set

of MOVIE.BYU commands and prompts.

A description of the hardware and the theory of displaying

shaded images is discussed. The device drivers, Interface program

and command structure modifications to MOVIE.BYU are presented.

This paper concludes with a sample demonstration run.

-3-

www.manaraa.com

CHAPTER II

DESCRIPTION OF HARDWARE

VAX 11/780

The computer at the Mechanical Engineering Computer-Aided

Design Laboratory is Digital Equipment Corporation's VAX 11/780 (5),

It has a word and addressing size of 32 bits. The VAX is currently

equipped with two megabytes of core and two 300 megabyte

disk drives. The VAX runs the virtual operating system VAX/VMS

with a page size of 512 bytes. Six VS11 color raster terminals are

interfaced to it and operate at channel speed. This architecture

is compatible with MOVIE.BYU's required 32 bit word size. With

virtual memory it is possible to create large models composed of

many polygons. The system is currently set up to handle models

composed of up to 3,000 polygons.

VS11 Color Raster System

The VS11 color raster terminal currently used at Lehlgh

university is a 19-inch RGB (red, green, blue) color CRT which can

display 16 colors. It has a visible resolution at 512 x 480 pixels.

The color values for each pixel is defined in 4 bits. It also has

incorporated into it a VT100 alphanumeric terminal. This feature

is functionally separate from the VS11 graphic capability and just

uses the same monitor for output.

-4-

www.manaraa.com

The VS11 color raster terminal is part of the VSV11/VS11 video

graphics system from Digital Equipment Corporation. It consists of

a display processor (high speed microprocessor), a graphic

instruction set, image memory, joystick and sync generator. The

VSV11/VS11 video supports two 32K "segments" of Display File Memory

called Main and Auxiliary. The Main segment would normally contain

the display file, and the Auxiliary segment would normally contain

a library of subroutines or image data. The display processor will

sequence through either of these segments with the Display Program

Counter register containing the virtual address of the next memory

location. The system operates as part of the VAX/VMS executive and

is incorporated into it by SYSGEN procedures. For a complete

specification and interface guide to the VAX refer to "VS/VSV11

VAX/VMS Version 2.0 S/W Driver's Users Guide" (7).

In order to display an image on the VS11, the data must be

organized into a display file in the memory of the VAX. This file

consists of a list of VS11 Instructions (graphic, control and data),

which define the image. These are sixteen bit instructions which

tell the display processor what action to take. The Display File

starting address is then moved to the Display Program Counter. The

microprocessor then sequences through the Display File instructions

and generates the desired image on the monitor. A complete technical

userrmanual is available from Digital Equipment Corporation (6).

A list of the common graphic instructions, their opcodes and bit

patterns, and their implementation will be discussed in Chapter IV.

-5-

www.manaraa.com

CHAPTER III

MOVIE.BYU DESCRIPTION AND THEORY

Functional Description

MOVIE.BYU (2) is a group of Fortran programs used for the

display and manipulation of data in the form of N-sided polygons,

solid elements or contour lines. This data could represent

architectural, topological or mathematical models. MOVIE.BYU is

used at Lehigh University's Mechanical Engineering Computer-Aided

Design Laboratory for the shaded color display of Polygonal Element

Data. This data is generated from a finite element description of

a geometric model, created by the design capabilities of McAuto's

Unigraphics Design System (10).

MOVIE.BYU requires a computer with at least a 32-blt word size,

though a 16-bit version of MOVIE.BYU with fewer capabilities is

available (4). A complete description and excellent training manual

of its operation is available from Hank Christiansen at Brigham

Young University (3).

The modules of MOVIE.BYU that are used in this paper are:

COMMAND.FOR, HIDDEN.FOR, AND DEVICE.TK4., which are modified and

renamed COMMANDLU.FOR, HIDDENLU.FOR, and DEVICEVS.FOR. They are

compiled and linked together with the MACRO'S VSA32768 and ASCII

to form DISPLAY.EXE. These modules provide the capabilities for

displaying an object as a line drawing, with or without hidden

lines removed, or as a continuous shaded color image.

-6-

www.manaraa.com

COMMAND.FOR is the interactive command processor. It provides

a four letter key word command structure. Some of its capabilities

include:

• Global or local rotations and translations

• Color selection of the background and individual parts

• Choice of shading parameters

1. Uniform over the polygon surface (UNIFORM)
2. Vary linearly over the polygon but not matching

at the polygon boundaries (FLAT)
3. Vary linearly over the polygon with shading

matched at the boundaries (SMOOTH)

• Movable light source

• Adjustment of the intensity of the object's highlights

and its functional variation with the angle between the

reflected light and the observer.

COMMAND.FOR had to be modified to handle subroutine calls to

the VS11. This involved rewriting some of the subroutines to take

advantage of the VSU capabilities. Additional changes were made

to simplify the user interface and some new commands were intro-

duced. Also, array dimensions were increased to allow the display

of models with more elements.

HIDDEN.FOR includes the subroutines to provide the hidden line

or surface removal functions. This module was only slightly

modified. The changes that were made involved increasing array

sizes so that models with more elements could be processed.

DEVICE.TK4 is the module that provides the Device Driver

Routines. Since the drivers for DEVICE.TK4 were written for the

Tektronix 4027 color terminal, the driver routines for the VS11

-7-

www.manaraa.com

had to be created. The VS11 has a completely different functional

description and addressing scheme than the 4027. Thus, the 4027

driver subroutines could only be used as a general guide as to what

information was being passed to them and the manner in which they

should respond.

Hidden Line - Surface Removal

MOVIE.BYU offers the computer-aided design user two important

features, the hidden line algorithms and shading algorithms. These

features are not normally available on traditional computer-aided

design systems. Although newer solid modeling design systems are

beginning to make use of them (1,11).

The hidden line or hidden surface algorithms provide a means

for removal of hidden parts from images of solid objects. Figure la

shows a cube and all the lines that define it. Figure lb shows the

same object with the hidden lines removed; only a part of the

external surface is visible.

MOVIE.BYU uses an algorithm developed by Watkins (14) for its

hidden line capability. The algorithm operates in image space, i.e.

it performs no more calculations than are required for accuracy

relative to the resolution of the display. Thus, the algorithm

calculates the intensity for each of the 512 x 480 points on the

screen. The Watkins algorithm is classified as a Scan Line Algor-

ithm. It solves the hidden line problem one scan line at a time,

starting at the top and proceeding down the 480 scan lines to the

bottom. 0 —o—

www.manaraa.com

Figure la

Figure lb

Figure 1

Hidden Line Removal
-9-

www.manaraa.com

The algorithm operates by first doing a y sort of the edges of

the polygons, i.e. by sorting the line edges of all the polygons

from maximum y to minimum y values. As the scan proceeds from

maximum y to minimum y down the screen, the y sorted structure is

examined to find any new polygon edges that are on the scan line.

These are added to those already there and the edges that terminate

on the scan line are deleted. This is an example of scan line

coherence. The edges that intersect one scan line are likely to

intersect the next. Thus a list of the "working" edges is main-

tained and the algorithm makes incremental additions and sub-

tractions to the list.

The algorithm then examines this list of "working" edges to

determine which faces of the polygons are visible, and the location

of the corresponding edges on the scan line. To accomplish this,

the edges of the polygons that fall on the scan line are sorted in

the x direction and sample segments are created. In Figure 2, the

segments AC, CB, and BD are normally created from polygon A and B.

In contradistinction to traditional scan-line algorithms, the

Watkins algorithm only creates segments AC and CD. It tests to see

which line segment is in front of the other by doing a binary sub-

division search in the z direction. If the closest edge in the x

direction of one segment is deeper in z than the furtherest edge of

another segment, then clearly the first segment is behind the second

and no further calculations are necessary. In cases where this is

not true, line CD is divided at its midpoint (Figure 3). Its left

-10-

www.manaraa.com

Scan Line

A C B

Figure 2

Scan Line Intersecting Polygons A and B

* x

Figure 3

Depth Representation of Segments AB and CD
-11-

www.manaraa.com

half can be seen to obscure segment CB since point E is closer in

the z direction than any point on AB and the depth at C and B need

not be computed.

For a general discussion of other hidden line algorithms and

an excellent book on computer graphics in general, refer to the

book Principles of Interactive Computer Graphics (12). A detailed

study of hidden line algorithms can be found in an article entitled

"A Characterization of Ten Hidden-Surface Algorithms" (13) . A new

hidden line algorithm just released by Hedgley (9) which was

developed at NASA, claims to be the most robust approach and

complete general solution to the hidden line problem.

Shading

The realism of an image generated by computers depends not on

just the hidden lines and surfaces being removed but on shading

effects as well. Once the hidden surfaces are removed, the colors

and their intensities are computed for the remaining surfaces and

displayed. In Figure 3, region 1 and 4 would be the background color.

Region 2 would be shaded according to the parameters for polygon A.

Region 3 would be shaded according to the parameters for polygon B.

The shading effect for MOVIE.BYU is adjusted by the following

parameters:

1. Regular light intensity - represents the color of the
object and its general brightness.

2. Highlights - provides bright areas on the model
caused by portions of the reflected light being
indirect or nearly direct in line with the eye.

-12-

www.manaraa.com

3. Single light source - can be set at any arbitrary
distant position.

4. Diffused value - if a lighted side is such that it
can not be seen (i.e., it's shade would match the
background), one can Increase its intensity by setting
the amount of diffused light emitted by such a part.

MOVIE.BYU can generate three distinct types of shading.

Figure 4 shows a curved surface approximated by 4 quadrilateral

elements. The single head vectors at the comers are the normals

to the surface at these corners. Flat shading calculates the

corner intensity values using these normals. This produces the

effect of distinct, polygons, but does allow the variation of color

over the polygon.

The single headed vectors at the center of each element are

the average of the corner normal vectors. Uniform shading uses

those vectors and thus color and intensity would be uniform over the

element.

Smooth shading uses the double headed vectors at the nodes

which represent the average of the element normals at the node.

This allows variation of light intensity and color over the element,

but guarantees continuity at the element boundaries.

MOVIE.BYU uses a shading technique developed by Gouraud (8).

This algorithm assumes that light intensity varies linearly between

any two points on the element boundaries. The flat and smooth

shading feature of MOVIE.BYU uses this technique.

Advanced shading techniques such as transparency, shadow

casting, surface texture and surface features are available in other

-13-

www.manaraa.com

^ Light Source

Figure 4

Normal Vectors on a Curved Surface

-14-

www.manaraa.com

programs. Extremely realistic images that are difficult to dis-

tinguish from photographs can be generated with these techniques.

An overview of shading techniques is discussed in the book

Principles of Interactive Computer Graphics (12).

-15-

www.manaraa.com

CHAPTER IV

DEVICE DRIVER DESCRIPTION

In order to write the device drivers for the VS11 color

terminal two problem areas had to be mastered. First, an under-

standing of the VS11 and its command structure was required. This

was accomplished by reading the programmer section of the VS11

users manual (6). This manual gives an opaque and highly technical

description of the command structure. Fortunately, a VS11 demo

program (SAMPLEF.FOR) supplied by Digital Equipment Corporation

demonstrated how some of the commands operated. Between the two

sources and much experimentation, an adequate understanding of

the VS11 command structure was acquired.

The second problem area and an even more obscure one was the

question of which graphic functions were needed and how to inter-

face them with MOVIE.BYU. The two modules which required modifica-

tion were COMMAND.FOR and DEVICE.TK4. COMMAND.FOR is a very

large problem of approximately 7200 lines and DEVICE.TK4 is

approximately 2700 lines of comments and Fortran code. DEVICE.TK4

had to contain the main initialization and device driver routines

for the VS11 and was renamed DEVICEVS.FOR. Device driver sub-

routine calls were added to COMMAND.FOR. The latter also

required some restructuring of its subroutines and was renamed

COMMANDLU.FOR. Since these programs are so large, they are not

-16-

www.manaraa.com

Included In this paper but are available for inspection either in

the office of Professor Samuel L. Gulden or at the Mechanical

Engineering Computer-Alded Design Laboratory at Lehigh University.

The initialization of the VS11 can be found in the subroutine

VS_INIT in DEVICEVS.FOR. First, the required common blocks and

declarations of variable types are declared. A check is then made

to insure that the users terminal is a VS11 terminal and that it has

been assigned to the VS11 system channel. If not, an error is

displayed and the program is terminated. To make this assignment,

the VAX/VMS command ASSIGN VS_0 VS11 is issued before the program

is run. The _ represents the letter designation of the specific

users terminal (A, B, C, D, E, or F).

The system variables are then defined. The variable Dl sets

the location of the starting address of the main VSll segment which

is defined in the MACRO program VSA32768. This program reserves a

32K area for the display file and page aligns it. D2 is the start-

ing address of the status block in the VAX. D3 is the starting

address of the AUXILIARY segment which is defined in the MACRO

program ASCII (the commands for the ASCII character set). AUXLNG

sets the size of this AUXILIARY segment. IO_START, IO_READSTATUS,

IOJWAITSWITCH and IO_RESUME are used by the VSll driver to perform

I/O operations.

The opcode mnemonics for the bit patterns, in octal format,

that are necessary for the display file commands are defined in 63

assignment statements.

-17-

www.manaraa.com

The possible color combinations are defined next. The bit

patterns for all 16 possible colors are defined in the array OPCDS.

The 16 colors are displayed in groups starting with black and con-

tinuing with shades of green, blue, red, and purple, and ending with

white. The array CCDS contains the 4 bit representation of these

colors, they are arranged in the four color groups (green, blue, red

and purple) with black and white appended to each group. Five shades

of green and purple and six shades of blue and red are generated.

These are the "pure" colors that can be displayed by the VS11.

These colors are then blended together to form intermediate shades.

After all the variables are defined, a call is made to VS_CLEAR.

This subroutine clears the VS11, both the VT100 and the graphic

portion, as well as the image memories and monitor. The following

action is performed:

DSLING - 1
CALL DSSET (LSTC.0R.CHAN3.0R.IM_RD.0R.IM_WRT)
CALL DSSET (LSTC.0R.CHAN2.0R.IM_RD.0R.IM_WRT)
CALL DSSET (LSTC.0R.CHAN1.0R.IM_RD.0R.IM_WRT)
CALL DSSET (LSTC.OR.IM_RD.OR.IM_WRT)
CALL DSSET (UNBLINK)
CALL DSSET (LAS.OR.CLEAR)
CALL VS_IO (I0_START,D1, ZERO)

The display file pointer, (DSLING), is set equal to 1. Each

call to DSSET loads the bit pattern sent to it into the display file

at location DSLING. DSLING is then incremented. The instruction

LSTC sets the status register C to the channel selected, i.e., 0 to 3

(four channels are available in this system, but normally only one is

used) and enables the channels for reading and writing.

-18-

www.manaraa.com

The command UNBLINK turns off the blinking feature. The

command LAS.OR.CLEAR loads the status register A with a stop command

and clears the image memory.

At this point the display file would have six entries. No

action is taken by the display processor until the VS_IO call is

given. The VS_IO call tells the display processor where in memory

the display list is located, which VS11 channel to use, sets the

status register locations and then executes the display list through

the LAS instruction. At that point the screen and image memory

are cleared.

A debugging feature has been added to the program. If the

variable DEBUG is set to .TRUE., a file is printed to list the

display file location, bit pattern in octal and most of the

corresponding mnemonics. A sample debugging output for the above

instructions is presented:

Length of Display File ■» 6

LSTC
LSTC
LSTC
LSTC
UNBLINK
LASCL

Line Drawing

The basic type of output that MOVIE.BYU creates is a line.

The subroutine LINETO and MOVETO of DEVICE.TK4 are the appropriate

draw and move routines for the Tektronix 4027 terminal. The

-19-

1 177460
2 177060
3 176460
4 176460
5 176060
6 173540

www.manaraa.com

subroutines LVDRW and LVMOV, which draws a line between two end

points and which moves the graphic cursor, respectively, mimic the

4027 subroutines. These subroutines are called in COMMANDLU in

the routines PLTIN and LABELS. The latter routines had to be

modified in order for the calls to be valid.

It should be noted that all modifications to MOVIE.BYU were

done in a manner that did not interfere with the operating structure

of the other devices that MOVIE.BYU supports. Thus, if a 4027

terminal is available, the program will run properly using it.

The simple box drawing (Figure lb) demonstrates the line draw-

ing capability, and would generate a display file with 34 entries

(Table 1). The first entry would clear the screen. An absolute

point command is then given to location x =» 0, y =» 0 to establish a

reference point. The lines are drawn in terms of "long" vectors.

The "long" vector mode is specified and then all data entered into

the display file would represent "long" vectors. The "long" vector

commands require the next 2 display file entries to represent the

change in x direction and change in y direction, respectively. If

the 5th octal digit (from right to left) is a 6 or a 4 the line will

be drawn. If it is neither 6 or 4, it will not be drawn and the

command acts as a move. To draw the 7 lines of Figure lb requires

7 draw commands plus 7 move commands; a move being issued before

each draw. Finally the LAS command is given to indicate the end

of the display file.

-20-

www.manaraa.com

Length of Display File = 34

1 170140 LSTACL
2 114000 ABSP
3 0 DATA
4 0 DATA
5 113700 LVECCOL
6 1426 DATA
7 1512 DATA
8 60624 DATA
9 10 DATA

10 20142 DATA
11 20116 DATA
12 40142 DATA
13 116 DATA
14 20142 DATA
15 21126 DATA
16 40000 DATA
17 1010 DATA
18 766 DATA
19 21116 DATA
20 40000 DATA
21 1222 DATA
22 20624 DATA
23 21234 DATA
24 60142 DATA
25 116 DATA
26 142 DATA
27 20116 DATA
28 40000 DATA
29 1244 DATA
30 0 DATA
31 21244 DATA
32 40624 DATA
33 12 DATA
34 173400 LAS

TABLE 1

Display File Entries for Figure lb

-21-

www.manaraa.com

Text

MOVIE.BYU has the ability to number the polygons and their

nodes. In order to implement this feature on the VSll, it was

necessary to be able to put characters in the display file. Thus,

subroutine VS_TEXT in DEVICEVS was created and subroutine LABELS

had to be modified.

In subroutine LABELS the graphic cursor is first moved to the

desired position with a LVMOV call. Since the characters that would

be sent for display are numbers up to five digits long, they are

kept in an array and passed along with a count of the number of

digits to VS_TEXT. The current location of the graphic cursor is

then moved to account for the displacement which occurred by

printing the number.

Subroutine VS_TEXT sets up the display processor for character

entry by issuelng character Initialization commands to the display

file. They set the character base to the AUXILIARY segment where

the character structure is stored and activates the character mode.

This will assume that until another control opcode is encountered,

all further entries in the display file consists of character data.

The subroutine then- examines each character and zeros out all bits

of index greater than seven. Since each display file entry can

handle two characters (16 bits), the digits are loaded in pairs into

the display file. Moreover, if the number of characters was odd,

a space is added after the last digit.

-22-

www.manaraa.com

Color

With the VS11 being a color display terminal, MOVIE.BYU should

use all of the terminal's capability. A limitation of MOVIE.BYU

was that in the line drawing mode, it was not possible to specify

the color in which lines would be drawn. For a model composed of

one part, this is not a serious limitation. If a model is made up

of many parts (MOVIE.BYU is currently dimensioned for 20 parts, but

can be increased), it would be good, for clarity purposes, to

display them in different colors.

Since the VS11 is only a 16 color display, rather than specify

the colors as some form of red, blue and green combination, it is

possible to display the 16 colors on the monitor and choose one

of them by number. Subroutine VS_C0L0R in DEVICEVS displays the

possible VS11 colors with one of the numbers 1 through 16 under

each color.

The VS_C0L0R subroutine places the 16 possible colors across

the top of the monitor. This is done by creating 16 horizontal

histograms, 50 x 50 pixels in size, and filling them with each of

the 16 colors. By using the long vector commands a white border is

then placed around the histograms for clarity. The sixteen color

histograms are number 1 to 16 by using calls to VS_TEXT. The VT100

portion of the display is advanced 5 lines down from the top of

the screen so that all prompts appear below the color display.

The user of the program has the option of specifying color

for various parameters in the display of the object. They are;

-23-

www.manaraa.com

the border placed around the display, the coordinate axis or triad,

the background of the display, and the model itself. The display

of the border and coordinate triad are optional, but if either is

used its color specifications are selected in subroutine SCOPE of

COMMANDLU. If the border or coordinate triad are to be displayed,

the color selection chart is first displayed and a choice of

color is made. The variables BDKILL and 1KILL equal zero if the

border and coordinate axis are to be displayed and equal to one if

not. The appropriate code, representing the color for the display

file, is stored in BDCOL and TRDCOL, respectively. Since the border

and coordinate axis will be drawn with long vectors after the model

is displayed, the color specification for these vectors is the only

information required.

Subroutine COLO of COMMANDLU chooses the color for the back-

ground and for each part that comprises the model. First, the

user has the option of leaving the background black; in that case

the variable BGKILL would equal one. If the user chooses a color

for the background, BGKILL would equal zero. The color selection

chart is again displayed and a choice of color is requested (a value

from 1 to 16 is chosen). The appropriate code for the diaplay file

is stored in BGCOL.

The above procedure is followed for all the parts that make up

the model. Initially, the parts are set to white in the storing

array PATCOL. If any part is to be drawn with a different color,

the appropriate color display code is stored for that part in PATCOL.

-24-

www.manaraa.com

This completes the color requirements for the display of a

model in line drawing mode, with or without hidden lines removed.

All the required parameters have been defined because the model is

drawn as a collection of vectors and their appropriate colors

have been specified.

Under the current operation a model composed of more than one

part would be displayed in the following sequence. First the

background is colored by filling the screen with the chosen color.

This is done by using horizontal histograms to the height of the

screen. Next the model is drawn one part at a time with each

part drawn in the chosen color. Finally the border and coordinate

triad are drawn. This sequence occurs so quickly that the completed

screen appears to be drawn at once. ' A problem occurs if the hidden

line removal feature is used. Since the parts are no longer

considered separately, and the visible line segments are drawn in

a top to bottom manner with no regard as to which part they belong;

the complete model is drawn in the color of the last part specified.

Patterning

To display the model with a shaded colored surface requires a

completely different set of color specification descriptions. With

a 16 color display only 3 shades of green, 4 shades of red and blue,

and 3 shades of mixed color (purplish) are possible. If a model is

to be shaded blue, the 4 available shades will cause the model to

appear almost flat and it would be extremely difficult to determine

-25-

www.manaraa.com

what the object was supposed to be. In order to achieve realism,

a blending of the available shades into additional shades in a

patterning effect is required. Once this patterning scheme was

created, the next problem was interfacing it to MOVIE.BYU.

In determining a patterning scheme, three goals were considered:

1. To simulate at least 256 colors. Since the
shading information in MOVIE.BYU is presented
in the form of 256 possible values for the 3
primary colors an ideal patterning effect
should simulate these.

2. To limit the grainy appearance of the image.
A pronounced pattern detracts from the sharpness
of the picture and gives it a diffused and
grainy appearance.

3. To make the patterning algorithm as efficient
as possible. The patterning algorithm would
have to be executed 512 x 480 = 245,760 times
just to display one picture.

For practical reasons of resolution it is necessary to compromise

between the first two goals. The more colors required, the

greater the patterning and the grainier the appearance.

Table 2 organizes the possible VS11 colors into 4 color

groups: green, blue, red and purple. White and black were appended

to each group thus adding two more shades to them. This created

22 possible colors. Table 3a shows the first patterning scheme

that was tried. As an example, the two colors black and dark

green were chosen. An area of the model that would be shaded a

certain color would be at least a few pixels wide. If an area were

shaded color 1, the first 6 pixels would be: dark green, black,

black, dark green, black, black. This pattern would be repeated

-26-

www.manaraa.com

Table 2

VS11 Color Groups

Green Shades

black dark green

Blue Shades

black dark blue

Red Shades

black dark red

Purple Shades

black dark purple

medium green light green white

medluml blue medium2 blue light blue white

mediuml red medium2 red light red white

medium purple light purple white

Example:

Black

BBB

Table 3a

3 Group Patterning Scheme ■ 58 Colors

1

GBB

2

GGB

Dark Green

GGG

Table 3b

4 Group Patterning Scheme = 76 Colors

Example:

Black 1 2 3 Dark Green

BBBB GBBB GBGB GGGB GGGG

-27-

www.manaraa.com

for any area of the model colored in this shade. The added colors

1 and 2 are introduced between each pair of "pure" colors, this

yields 13 shades of green and purple, and 16 shades of red and blue.

The "grainyness" of the final picture is very slight and if the

monitor is viewed from a few feet away the patterning disappears

and the various areas appear to be shaded in new colors. This

still did not provide enough shades for a realistic picture.

Table 3b shows the pattern for a 4 pixel group. This pattern

would generate 3 points of the same color together and is noticeable

as a stripe in the pattern. This scheme still provides a reasonable

texture when the model is viewed from a distance of a few feet.

The additional shades, 17 of green and purple, and 21 of red and

blue, give the model an aspect of realism which is an improvement

over the scheme of the 3 pixel grouping.

Any additional increase in the patterning would be too

objectionable when viewed in a normal manner. Thus, the 4 pixel

grouping was decided upon and implemented.

Implementation

The implementation of this patterning technique required the

modification of two subroutines and a creation of a third. Subroutine

COLO in COMMANDLU was one that had to be modified. The variables that

were defined for the color selections in the line drawing mode are not

used in the shading mode. In the shaded mode it is necessary that

the color parameters be specified as integers between 0 and 255

-28-

www.manaraa.com

for each of the primary colors (green, blue and red). Therefore,

the chosen colors had to be translated Into this format.

A color would be defined as being a certain shade if its

value (0-255) was less than or equal to a defined subdivision in

this range. Table 4a shows the subdivision points for the green,

blue and red colors. The numbers with the * symbol above them

represent the "pure", unpatterned VSll colors. Therefore,

the integers defining the "pure" colors would be stored when

the color of the model was chosen. Table 4b shows the "pure" color

values that would be used for the chosen VSll colors. They are

located in arrays GCD and R3CD.

In the background color selection, if medium green is chosen,

the following variables would be set as Indicated: IC1 *» 134 (green),

IC2 ■ 0 (blue) and IC3 - 0 (red). The variable values are then

stored in one integer (IPB - IC1 * 2 ** 16 + IC2 * 2 ** 8 + IC3).

In color selection for the parts of the model, the highest value

in the chosen color group is taken. This is done so that the shading

of the model will vary over the total range of possible shades.

Thus, if medium green is chosen for the model; IC1 ■» 194, IC2 = 0,

IC3 «= 0. These values are stored in ICC which is defined in the

same manner as IPB.

Subroutine SRL in DEVICEVS contains the general shading algorithm.

It evaluates the shading information for the visible segments and

then calls the appropriate routine for output. In order to implement

-29-

www.manaraa.com

Table 4a

Primary Color Subdivision Scheme

Green GDIV

* * * *

14, 29, 44, 59, // 74, 89, 104, 119 // 134, 144, 164, 179, // 194

209, 224, 240 //

Red and Blue RBDIV

* * * *

12, 24, 36, 49 // 61, 73, 85, 98 // 110, 122, 134, 147 // 159, 171

183, 196 // 208, 220, 232, 245 //

Table 4b

Pure Color Designations

Green

0, 74, 134, 194, 240

Red and Blue

0, 61, 110, 159, 208, 245

-30-

www.manaraa.com

SRL, an appropriate insertion of a call to VS_SRL was required.

The latter subroutine is the subroutine that drives the VS11. Data

is output to VS__SRL one complete scan line at a time with the

values of the green, blue and red component for each of the 512

pixels being passed in integer arrays.

Subroutine VS_SRL takes the separate green, blue and red

values and translates them into a single 4 bit color value, its

"pure" color. It also calculates which, if any, patterning effect

should be applied.

The following Fortran code accomplishes this:

OCTAL VALUES DEFINED IN INIT FOR CCDS
CCDS/0,4,10,14,17,0,1,5,11,15,17,0,2,6,12,16,17,0,3,7,13,17/

PIXLVAL=0
DO 249 P01,512

DO 210 1-1,16
IF(LGREEN(PC).LE.GDIV(I))THEN
PIXLVAL=CCDS((1+3)/4)
PTRN(PC)«IM0D(I-1,4)
GOTO 220

END IF
210 CONTINUE

PIXLVAL-15
PTRN(PC)=0
GOTO 245

220 DO 230 1=1,20
IF(LBLUE(PC).LE.RBDIV(I))THEN
PIXLVAL=PIXLVAL.OR.CCDS((1+23)/4)
PTRN(PC)=IMAX0(PTRN(PC),IM0D(1-1,4))
IF(PIXLVAL.EQ.15) THEN
PTRN(PC)=0
GOTO 245

END IF
GOTO 235
END IF

230 CONTINUE
PIXLVAL=15
PTRN(PC)=0
GOTO 245

-31-

www.manaraa.com

235 DO 240 1=1,20
IF(LRED(PC).LE.RBDIV(I))THEN
PIXLVAL=LIXLVAL.OR.CCDS((I+47)/4)
PTRN(PC)=IMAXO(PTRN(PC),IMOD(I-l,4))
IF(PIXLVAL.EQ.15) PTRN(PC)=0
GOTO 245

END IF
240 CONTINUE

PIXLVAL=15
PTRN(PC)=0

245 DO 246 INDX-1,22
IF(PIXLVAL.EQ.CCDS(INDX)) THEN
SLDATA(PC)=INDX
GOTO 249

ENDIF
246 CONTINUE
249 CONTINUE

Array GDIV and RBDIV are the subdivision points from Table 4a. The

array CCDS is included for clarity and shows the octal definition

of the "pure" colors. The green value (LGREEN(PC)) for each pixel

is compared to the GDIV array to find the subdivision point. When

found, the appropriate color code is stored in PIXLVAL (PIXLVAL^CCDS

((I + 3)/4)). The pattern code (0, 1, 2, or 3) is then computed as

(PTRN(PC)=IM0D(I-1,4)).

The blue PIXLVAL component (LBLUE(PC)) is logically OR'ed to

the previous value of PIXLVAL. The variable PTRN(PC) is the maximum

patterning effect due to the green and blue components and is then

computed as (PTRN(PC)=IMAXO(PTRN(PC),IM0D(I-1,4)).

The red PIXLVAL component (LRED(PC)) is logically OR'ed to the

value of PIXLVAL already defined. The maximum PTRN is computed again.

Finally, SLDATA(PC) equals the index value of the CCDS array

that would create the defined PIXLVAL. The index rather than its

value is used so that the pattern effect can easily be computed.

-32-

www.manaraa.com

The next step is to load the display file with the appropriate

commands for displaying pixel data and this is followed by the

loading of the pixel data itself. The following display file

commands are called for each sran line:

CALL DSSET (ABSP)
CALL DSSET (0)
CALL DSSET (958-SCAN_LN)
CALL DSSET (BMP1)
LOC - (DSLING - 1) * 2
CALL DSSET (LOC + 6)
CALL DSSET (DJMP)
CALL DSSET (LOC + 262)

These commands are described as follows: The graphic cursor

is set to the top left hand corner of the monitor (Note: 958 - scan

line 459) and the Bit Mapped mode is called. The address of the

data in Display List is then specified. Finally, a jump command

to the next location after the end of the data is issued. All

numbers have to be specified at twice their value, thus, as each

scan line is processed, the variable scan line is incremented by

two. The data for the pixel colors are loaded into a 16 bit word,

4 bits at a time, thus, a 512 pixel display would require 128

16 bit words.

The physical display time requirements and the length of the

display file determine how many scan lines are calculated before

being displayed. An average image with the VAX dedicated to a

single user would require approximately 2 minutes to display.

It is psychologically better to have the picture appear in small

segments than to stare at a blank monitor for 2 minutes. The

-33-

www.manaraa.com

display file is currently set to display 60 scan lines at a time.

This implementation keeps the display file well within the 32K

maximum size.

The following Fortran code to implement the patterning and to

pack the display file is presented:

DO 250 K-l,512,4
COLOR=0
DO 275 LOOP-1,4

INX=(K+L00P-1)
CB»SLDATA(INX)
IF (PTRN(INX).EQ.O)THEN

ITEMP=CCDS(CB)
ELSE IF (PTRN(INX).EQ.1)THEN

IF(ROTATE(PTRN(INX),CB).EQ.0)THEN
ITEMP=CCDS(CB+1)

ELSE
ITEMP»CCDS(CB)

ENDIF
ROTATE(PTRN(INX),CB)=IM0D(ROTATE(PTRN(INX),CB)+1,4)

ELSE IF (PTRN(INX).EQ.2)THEN>
IF(ROTATE(PTRN(INX),CB).EQ.O.OR.

R0TATE(PTRN(INX),CB).EQ.2)THEN
ITEMP=CCDS(CB+1)

ELSE
ITEMP-CCDS(CB)

ENDIF
ROTATE(PTRN(INX),CB)»IMOD(ROTATE(PTRN(INX),CB)+1,4)

ELSE
IF(ROTATE(PTRN(INX),CB).EQ.3)THEN

ITEMP-CCDS(CB)
ELSE

ITEMP=CCDS(CB+1)
ENDIF
ROTATE(PTRN(INX),CB)=IMOD(ROTATE(PTRN(INX),CB)+1,4)

ENDIF
ITEMP=ISHFT(ITEMP,(L00P-1)*4)
C0L0R=C0L0R.OR.ITEMP

275 CONTINUE
CALL DSSET(COLOR)

250 CONTINUE

Thus: the 512 pixels of the scan line are loaded into the display

file 4 pixels per word. CB equals the appropriate index value of

-34-

www.manaraa.com

the color code array. If the plxal to be displayed was a "pure"

color, then no patterning Is required (PTRN(INX)=0), and the pixel

code is loaded into ITEMPi(ITEMP=CCDS(CB)). ITEMP is then shifted

the correct number of bits for its proper placement into the 16 bit

word (lTEMP=ISHFT(ITEMPj(L00P^l)*4), and logically OR'ed with the

variable COLOR. When all 16 bits are defined in COLOR, they are

stored in the Display File (CALL DSSET (COLOR)).

If patterning is required, the following is done: a two

dimension array variable ROTATE(PTRN(INX),CB) is evaluated to choose

the proper color to be assigned. ROTATE stores the number of entries

into each type of pattern. The first time a specific pattern is

accessed, ROTATE-0 and the color representing the first bit is sent

to ITEMP. ROTATE is then incremented. The next access to that

pattern would generate the color specified by the second bit in that

pattern. ROTATE is incremented again. This is repeated for each

access to that specific pattern with ROTATE having the possible

values 0, 1, 2, or 3.

For example, when PTRN - 2, the bit pattern GBGB from Table 4b

is specified. For the first entry into this shade, ROTATE - 0 and

ITEMP = CCDS(CB+1). Note that the "pure" color for this group would

be black and CCDS(CB) would equal black. Therefore, CCDS(CB+1)

would be dark green. ROTATE is incremented to 1. The next entry

would generate a black color (CCDS(CB)). Therefore, when ROTATE » 0

or 2, dark green is output, otherwise black is output.

-35-

www.manaraa.com

The Images created from generating shaded color pictures on

a 16-color display is available for viewing in the Mechanical

Engineering Computer-Aided Design Laboratory at Lehigh University.

For a truly realistic image, however, the 76 simulated colors are

not enough and a 256 color display is required.

-36-

www.manaraa.com

CHAPTER V

UNIGRAPHICS FINITE ELEMENT MODULE TO

MOVIE.BYU INTERFACE

To allow MOVIE.BYU to display models created on the Unlgraphlcs

Design System an Interface program was written (UGFEMBYU). The

output from the finite element module is stored in a files-11

formatted file on the VAX 11/780. The interface program reads

this file, converts the data to the proper form for MOVIE.BYU, names

the resultant file, and stores it on the VAX 11/780. An understanding

of the structure of MOVIE.BYU1s input specifications and data

structures, as well as the Unlgraphlcs element description and data

structure, was demanded in order to convert the Unlgraphlcs format

to the MOVIE.BYU format.

MOVIE.BYU Geometric Input Requirements

MOVIE.BYU will accept the geometry of an object defined in

terms of N-sided polygons. Figure 5 shows a 3-dlmensional surface

in space. It contains 4 polygons numbered within a circle. The

nodal points that comprise these polygons are numbered in a counter-

clockwise order around it. For polygon 1 the node numbers would be

1, 2, 5 and 4. The data structure of this surface would comprise

a list of x, y and z coordinates defining each node (coordinate

array) and a list of edges (connectivity array) that make up the

-37-

www.manaraa.com

Figure 5

Three-Dimensional Surface in Space

-38-

www.manaraa.com

Table 5

Coordinate and Connectivity Array Definition

Coordinate Array

Node Number x y

1

2

3

4

5

6

7

8

9

1.0 2.0 30.0

8.0 4.0 20.0

20.0 3.0 25.0

5.0 11.0 25.0

10.0 15.0 28.0

18.0 12.0 22.0

3.0 35.0 27.0

12.0 40.0 20.0

22.0 33.0 22.0

Connectivity Array

Element Number Node Number

1 1
2
5
-4

2 2
3
6
-5

3 4
5
8
-7

4 5
6
9
-8

-39-

www.manaraa.com

polygon. Table 5 shows how the coordinate array and connectivity

array would be defined for Figure 5. Note that the last entry in

the connectivity array for each element is a negative number. This

signifies that all nodes on the perimeter of the element have been

defined.

Certain control variables also had to be defined. These are:

the number of parts comprising the model (NP =» 1), the number of

nodal coordinates (NJ =9), the number of elements (NPT = 4), and

the number of entries in the coordinate array (NCON B 4*4 = 16).

Finally, the parts array had to be defined since a model can be

composed of more than one part. A lower element number and an

upper element number can define the continuous element connectivity

that makes up the part. In the above example there is one part

ranging from elements 1 through 4.

Specifically, the geometry of the model is read into MOVIE.BYU

with the following Fortran statements:

READ (IUNIT, 120) NP.NJ,NPT,NCON,NTEST
READ (IUNIT, 120)((NPL(I,J),I+1,2),J=1,NP)
READ (IUNIT, 130)((X(I,J),I=1,3),J=1,NJ)
READ (IUNIT, 120)(IP(I).I-I,NCON) •-■'
120 FORMAT (1615)
130 FORMAT (6E12.5)

The variables are defined as follows:

NP = the number of parts
NJ = the number of nodes
NDT = the number of elements or polygons
NCON = the number of entries in the connectivity array
NTEST » a format test variable (must equal 0)
NPL = the parts array
X = the coordinates of the nodes
IP = the connectivity of the elements

-40-

www.manaraa.com

Therefore, the interface program UGFEMBYU writes the data out in

this format.

Unigraphics Output Specifications

There are six basic types of elements that are used in creating

a finite element mesh on an object. The 2-dimensional elements are

the triangle and the quadrilateral (Figure 6). These are 3- and

4-noded structures that are used if only a surface definition of a

model is required. This is a sufficient condition for displaying a

model with MOVIE.BYU since the viewable object is totally defined

in terms of polygons.

This type of finite element mesh is not as useful, from an

engineering point of view, as when the model is defined in terms of

solid volume elements. The volume definition is required for many

mechanical engineering analysis programs and is the one that is used

most often. Therefore, the 3-dimensional elements wedge, box,

wedge with interior midpoint nodes (wedge M), and box with interior

midpoint nodes (box M) (Figure 6) had to be handled in the conversion

process.

The output of the finite element module is described by the

following:

"title", application name, part name
"nodes", number of nodes
node label, node property ID, restraint list, x,y,z

coordinates

-41-

www.manaraa.com

2 1

Two-Dlmensional Elements

Three-Dimensional Elements with No Interior Nodes

Three-Dimensional Elements with.Interior Midpoint Nodes

Figure 6

Valid Element Types

-42-

www.manaraa.com

"elements", number of element types, total number of elements
element name, number of elements of this type, number of

lines composing the element, number of boundary points
element label, element property ID, node label, ...

The element name section Is repeated for each element type.

Conversion Program

The conversion program has to read the parts in the above format.

If the data is composed of 2-dlmensional elements, it is directly

converted into MOVIE.BYU format. If the data consists of 3-dimensional

elements, two additional processes have to occur. In the case of

wedge M and box M elements, the midpoint nodes are discarded, and

their coordinate definitions are not used. Therefore, these elements

are effectively converted into simple wedge and box elements.

Finally, the wedge and box elements are broken into their

corresponding quadrilateral surfaces. For Figure 6, the quadri-

laterals generated are defined by their nodal points as follows:

Wedge Elements Box Elements

1. 1,2,3 1. 1,2,6,5
2. 4,5,6 2. 4,3,7.8
3. 2,5,6,3 3, 1,2,3,4
4. 1,4,6,3 4. 5,6,7,8
5. 1,2,5,4 5. 2,3,7,6

6. 1,4,8,5

This method creates a large number of polygons, many which are

not on the surface and thus cannot be displayed. Currently MOVIE.BYU

can handle models composed of 3000 polygons. However, it is very

-43-

www.manaraa.com

inefficient to be required to apply the Hidden Line Removal algorithm

to polygons that are known not to be visible.

Figure 7, shows a typical block structure of a model. Quadri-

laterals 1, 2, 3, and 4 are on the interior of the model and should

not be passed to MOVIE.BYU since they would add no new information.

The edges that define them are calculated from the remaining visible

polygons and there is no need to calculate edges of polygons that

would contribute no new visible edges. The program that accomplishes

this interface and a detailed description of its operation follows.

Implementation

The program UGFEMBYU first initializes the variable limits for

the sizes of the arrays. An input file can have as many as 7000

nodes, but the output file for MOVIE.BYU can only have 3000 nodes

and 3000 elements. Since interior nodes on an input file are

removed, this ratio is reasonable.

Two temporary arrays are created and initialized to zero. The

array VALNODE is indexed by the node label. This is necessary since

the nodes are hot always presented in a consecutive numerical order,

the latter being a requirement of MOVIE.BYU. The array N0DENUM is

also indexed by the node label and holds a 1 in its first position if

the node is used in the element connectivity array. Since the midpoint

nodes are not used, their position in NODENUM is left equal to 0 and

are thus not passed to MOVIE.BYU. The second position in NODENUM

will be the new number that the node will have in MOVIE.BYU. It is

-44-

www.manaraa.com

/

-/

k'

Figure 7

Interior Quadrilaterals from a Box Element Structure

-45-

www.manaraa.com

created when all Interior nodes are selected and the resultant node

list is numbered consecutively starting at 1.

1ST0R (J,I) Is the array for storing the element connectivity,

it Is indexed by the element number and lists the node numbers that

comprise its connectivity. It is initialized to 0.

After the nodes are read and stored, the number of element types

(NETYP) is read and the total number of elements comprising the

model (NPT) is read. Next, for each type of element, the number of

elements in this group (NE) and the number of nodes that characterize

this group of elements (NBPTS) is read.

If the number of nodes that comprise the element equals 15,

then it is a wedge M element and only the first six nodes are

significant and are read. NBPTS is set equal to 6 and the rest of

the record is flagged not to be read (SKIPREC =1). If NBPTS

equals 20, then a box M element is represented and only the first 8

nodes are significant, NBPTS is set equal to 8, and the rest of the

record is not read (SKIPREC - 2).

If NBPTS is less than 5, the polygons can be read and stored

immediately. IEL equals the polygon number and ISTOR (1,IEL) would

be equal to one more than the number of nodes defining the polygon.

The node numbers defining the polygon would be stored from position

2 on. NODENUM (1, ISTOR (J,IEL)) would equal 1, since every node

read is contributing node to the connectivity and must be flagged in

NODENUM.

-46-

www.manaraa.com

If NBPTS » 6, the wedge elements are read. Each element Is

divided Into two 3-noded elements and three 4-noded elements. As will

be seen later, It Is Important to store all the 4-noded elements

from wedge type, as well as from box type elements together. To

accomplish this, a Boolean variable, FLAG8, is used. If FLAG8 is

true, then 4-noded elements have been entered and the new 4-noded

elements created are stored first followed by the storage of all the

3-noded elements. If FLAG8 is false, the opposite will happen, with

the triangle elements being stored first and the quadrilateral i.

elements next. The location for the storage of these elements is

computed in IEL3 and IEL4.

The wedge elements and their connectivity are read into a

temporary array (EL). The appropriate flags are set in NODENUM

for each active node. The triangular elements are then read into

storage.

The 3 quadrilaterial elements are stored in ISTOR at IEL4 to

IEL4 + 2, in a consistent node numbering scheme. The quadrilaterials

are numbered counterclockwise as they are viewed from the exterior

of the element. IEL3 and IEL4 are incremented appropriately and

the variable ELCREATE specifies that 5 elements were created from

the 1 wedge element. If the wedge element was really a wedge M

element, the rest of the record is skipped (SKIPREC = 1).

If NBPTS equals 8, then the 8-noded box elements are read. The

8 nodes are read into EL and the appropriate NODENUM flags are set.

-47-

www.manaraa.com

A consistent polygonal number scheme Is used to store these 6

quadrilaterals. ELCREATE adds 6 more polygons to the count, and

if the original element was a box M, then the rest of the record is

skipped.

If any other element type is read, then an error message is

displayed and the program terminates. Otherwise, the element

storing procedure is repeated until all the elements and their

connectivity is read.

The active nodes that were stored in VALNODE are now transferred

to X, namely the packed storage for the nodal coordinate values.

If NODENUM (1,_) = 0, then that node x^as not used and it is skipped.

If it equals 1, the NODECNT is incremented and NODENUM (2,_) equals

the new node number (NODECNT). A check•is made to see if the

maximum (NJMAX) node limit is exceeded. If not, the coordinates for

the nodes that were stored in VALNODE are transferred to X.

The next step before storing the data in MOVIE.BYU format is

to eliminate any polygons not defining an exterior surface. The

following Fortran code shows this algorithm:

VARIFY UNIQUE POLYGONS DELETE IF NOT
K = CURRENT POLYGON
L = POLYGON TESTED AGAINST

IF(IST0R(1,K).EQ. -1) GOTO 75 !POLYGON DELETED
L=K

66 L=L+1
IF(ISTOR)l,L).EQ.-l) GOTO 66 IPOLYGON DELETED
IF(ISTOR(l,K).NE.ISTOR(l,L)) GOTO 68 "END OF ELEMENT GROUP
IF(ISTOR(2,K).NE.ISTOR(2,L)) GOTO 66
IF(ISTOR(3,K).NE.ISTOR(3,L)) GOTO 66
IF(ISTOR(4,K).NE.ISTOR(4,L)) GOTO 66

-48-

www.manaraa.com

IF(IST0R(1,K).EQ.4) THEN 14 NODED ELEMENTS
IF(ISTOR(5,K).NE.ISTOR(5,L)) GOTO 66

ENDIF
ISTOR(l,L)= -1 1FLAG TO DELETE POLYGON
ELDEL=ELDEL+2
GOTO 75-

68 DO 70 J=2,ISTOR(l,K) !STORE POLYGON
NEDGE=NEDGE+1
JP(NEDGE)=NODENUM(2,ISTOR(J,K))

70 CONTINUE
JP(NEDGE) = - JP(NEDGE)

75 CONTINUE
WRITE(*,450)ELDEL

450 FORMAT('O','COMMON PLANER SURFACE ELEMENTES DELETED = ',14)
NPT- ELCREATE - ELDEL

Since the polygons were stored in a consistent numbering scheme, each

polygon is compared with every other remaining polygon having the

same number of nodes. This is done to see if the compared node

numbering schemes are identical. For this reason all 3- and 4-noded

polygons have to be stored together. If the node numbering is

identical then neither polygon is required. The current polygon

being tested is just not stored and its duplicate is flagged with

a -1 (ISTOR(l,_) - -1) and skipped over when reference is made to it.

ELDEL is increased by 2 to signify that two more elements have been

selected.

If no match is found when the end of the list or element group

is encountered, the element is then stored in the connectivity

array JP. This element is stored with the new nodal index that was

computed for it in NODENUM (2,_). Finally, the maximum element count

is checked and if it has not been exceeded, the program prompts the

user for an output file name of fewer than 8 characters and stores

-49-

www.manaraa.com

the converted data on it. This terminates the program and the user

is ready to run MOVIE.BYU. Appendix 1 shows a sample output with

user responses that were generated when running this program.

-50-

www.manaraa.com

CHAPTER VI

COMMAND STRUCTURE ADDITIONS AND MODIFICATIONS

Additions

The commands MODE, CLEAR and PRINT were added to the existing

commands for additional capability and ease of operation. Previously,

to change from Line Drawing mode to Shaded Color mode required the

issuing of the SCOPE command. This would also necessitate reentering

various color selections and resetting parameters that have not

changed. To avoid this, the MODE command was added. It calls sub-

routine VS_MODE of DEVICEVS which changes the Line Drawing designation

of the VS11 (IDVICE » -5) to the shaded color mode (IDVICE « 2) or

vice versa, depending on the original status of the display. A

message is printed which tells the user the current mode of the

terminal.

The ability to clear the screen, both the graphic and VT100

portion, through a user command was desirable.' The command CLEAR

was added and it calls VS^CLEAR which performs this function.

A final feature that was desired but not implemented is the

ability to copy the screen to a color hard copy device. The command

PRINT was added that calls VS_PRINT. Since a color hardcopy device

is not currently available, just the call to the appropriate sub-

routine is provided. It shows where the screencopy routine would

be located if a color hardcopy device was to be Interfaced to

-51-

www.manaraa.com

MOVIE.BYU. These commands were added to the list of active commands

and are listed when the HELP command is issued.

Default Values

If an object is to be displayed in shaded color mode, many

parameters have to be defined. Among them are: choosing the color

of the object, the light intensity and highlight effect, the type

of shading, the amount of diffused light emmitted, the location

of the light source and some obscure parameters such as the setting

of the fringe colors. To avoid having to set all these parameters,

when the LIGHT command is given, the first response from the user

allows the setting of default values. Note that the LIGHT command

can be issued directly or, if in the shaded color mode, it is issued

automatically when a VIEW or DRAW command is used. If default

values are desired then the following parameters are set:

- the regular light exponent for all parts - 1
- the highlight intensity for all parts =0.2
- the highlight exponent for all parts = 1
- the light source is set at the eye of the observer
- the diffuse light intensity or all parts =0.2
- the shading mode is set to flat shading
- the standard fringe colors are set
- the standard fringe colors are reflected about a

"white midpoint
- if smooth shading is requested then all parts are

smooth shaded

If these default values are not desired, then all the parameters

must be entered by issuing various commands. The choice of using

the default values is made each time the LIGHT command is issued.

-52-

www.manaraa.com

CHAPTER VII

CONCLUSION

With the modifications, enhancements and inclusion of the

device drivers, MOVIE.BYU can be used on the present hardware. With

the inclusion of the interface program UGFEMBYU, a model created on

Unigraphics with a finite element mesh applied to it can be displayed

with hidden lines removed and as a shaded colored object.

The programs COMMANDLU.FOR, DEVICEVS.FOR, HIDDEN.FOR,

VSA32768.MAR, ASCII.MAR, and UGFEMBYU.FOR are available for

inspection at the office of Professor Samuel L. Gulden and at the

Mechanical Engineering Computer-Aided Design Laboratory at Lehigh

University.

Appendix I shows how a complicated part is saved on Unigraphics

and transferred by UGFEMBYU into the proper format for MOVIE.BYU.

MANDRAL.FEM was chosen because it was created with 20 noded elements

and would use every feature of the interface program. Figure 8 shows

one view of the object with hidden lines removed.

Appendix II shows how a tie :rod (TR0D.GE0), which has :been

transferred to MOVIE.BYU format by UGFEMBYU, is displayed by MOVIE.BYU.

A step-by-step description of the system prompts and user responses

is included. Figure 9 shows this part as it was originally designed.

Figure 10 shows it with the finite element mesh applied to it, wedge

and box elements were used. Figure 11 shows the part displayed on

MOVIE.BYU with the hidden lines removed.

-53-

www.manaraa.com

Appendix III lists all the subroutines of MOVIE.BYU that were

modified and those that were created. This is included so that if

a future release of MOVIE.BYU is acquired, the areas of modification

are identified.

Further documentation for MOVIE.BYU is available at the

Computer-Aided Design Laboratory under M0VIE.DOC.

-54-

www.manaraa.com

CO °

2! I
3 >
00

•H
C

s
33

-55-

>

X

N

www.manaraa.com

In
In
I

Y

Z -X Figure 8

Hidden Line View of MANDRAL

www.manaraa.com

g,
W
QJ
a

1
0\ 7J
<u .3 u 00
3 •H
CO M

•H O
|X4

«§
(U

.c

I
0) •u

•rl

&

a)
•H
H

-56-

www.manaraa.com

~w^m^*m^m*~w^**—wm

I
Oi
o
l

Figure 9-

Tie Rod Original Design

Figure 10

Tie Rod with Finite Element Mesh

www.manaraa.com

o
«

•H
H
«W
O

a

c v
•a

-57-

www.manaraa.com

I

I

Figure 11

Hidden Line View of Tie Rod

www.manaraa.com

BIBLIOGRAPHY

1. Boyse, John W., Jack E. Gilchrist: "GM SOLID: Interactive
Modeling for Design and Analysis of Solids", IEEE Computer
Graphics and Applications, Vol. 2:2, March 1982, pp. 27-40.

2. Christiansen, H. N.: June 1981 Edition MOVIE.BYU, Version 4.2,
Brigham Young University, Provo, Utah.

3. Christiansen, H. N. and M. B. Stephenson: "MOVIE.BYU Training
Manual", Brigham Young University, Provo, Utah, July 1981.

4. Christiansen, H. N.: MINI-MOVIE.BYU. Brigham Young University,
Provo Utah.

5. Digital Equipment Corporation: "VAX/VMS Summary Descriptions
and Glossary", AA-D022B-TE, Maynard, Massachusetts, March 1980.

6. Digital Equipment Special Systems: "VSV11/VS11 Raster Graphics
System", Digital Equipment Corporation, Nashua, New Hampshire,
February 1980.

7. Digital Equipment Special Systems: "VS/VSV11 VAX/VHS Version
2.0 S/W Driver's Users Guide", Digital Equipment Corporation,
Nashua, New Hampshire, December 1980.

8. Gouraud, H.: "Computer Display of Curved Surfaces", University
of Utah, Computer Science Department, UTEC-CSC-71-113, June
1971, NTIS AD-762018.

9. Hedgley, David R., Jr.: "A General Solution to the Hidden Line
Problem", Computer Software Management and Information Center;
Athens, Georgia, NASA Reference Publication 1085, 1982.

10. McDonnell Douglas Automation Company: "Unigraphics Finite
Element Module", ACF 3796C, Cypress, California, May 1980.

11. Myers, Ware: "An Industrial Perspective on Solid Modeling",
IEEE Computer Graphics and Applications, Vol. 2:2, March 1982,
pp. 86-97.

12. Newman, William M. and Robert F. Sproull: Principles of Inter-
active Computer Graphics, Second Edition, New York, New York,
McGraw Hill, 1979.

-58-

www.manaraa.com

13. Sutherland, I. E., R. F. Sproull and R. A. Schumacker:
"A Characterization of Ten Hidden-Surface Algorithms",
Computer Survey 6(1):1, March 1974.

14. Watkins, C. S.: "A Real-Titne Visible Surface Algorithm",
Computer Science Department, University of Utah, UTECH-CSC-70-101,
June 1970.

-59-

www.manaraa.com

APPENDIX I

Instructions to save a part in the Unigraphics finite element

module and convert it (using UGEEMBYU) to MOVIE.BYU format.

Note: User responses are underlined.

*** UNIGRAPHICS FINITE ELEMENT MODULE ***

After finite element mesh has been applied to model
Format OPTION 6
Enter GRIP source file name MANDRAL
FILE PART
LOGOFF AND EXIT
RUN UGU06
3. Extract a Unigraphics file _3
5. GRIP Source Library .5
Give flle-11 name (new output file name) MANDRAL.DAT
Key in Unigraphics name (GRIP source file name) MANDRAL
0. Return to Unigraphics 0^
LOGOFF

*** UGFEMBYU ***

RUN UGFEMBYU
NAME OF DATA FILE FROM UGFEM? MANDRAL.DAT
ORIGINAL NUMBER OF NODES - 2428
2 TYPES OF ELEMENTS WITH A TOTAL OF 310 ELEMENTS
THERE ARE 22 ELEMENTS WITH 15 NODES
THERE ARE 288 ELEMENTS WITH 20 NODES
PLANER SURFACE ELEMENTS CREATED = 1838
UNUSED INTERIOR NODES DELETED « 1809
NUMBER OF NODES USED = 619
COMMON PLANER SURFACE ELEMENTS DELETED "956
TOTAL PLANER SURFACE ELEMENTS STORED =882
NAME OF GEOM FILE FOR MOVIE.BYU (*******.GEO)? MANDRAL.GEO
CONVERSION COMPLETE

-60-

www.manaraa.com

APPENDIX II

Example of MOVIE.BYU Operation

Note: User responses are underlined

RUN DISPLAY
<MOVIE SYSTEM DISPLAY>
<READ GEOM FILE> TIEROD.GEO
<READ DISP FILE> CR
<READ FUNC FILE> CR
<DEVICE> VS11
<LINE DRAWING OR COLOR> L
<SUPPRESS PICTURE BORDER?> N
<ENTER COLOR NUMBER> 8 (Pick color 1 to 16, 8-1t. blue)
<SUPPRESS COORINDATE TRAID?> N
<ENTER COLOR NUMBER> T_ (7-raed. blue)
»ROTA (Rotate figure)
<AXIS,ANGLE> X zhl Y 29. z 30 (Rotate X,45°;Y,30°;Z,30°)
»DIST "
<DISTANCE TO ORIGIN (30.27)> 18.0 (Acts as zoom, new distance

to origin = 18.0)
»DRAW (Draws figure with white lines, no hidden line removal)
»VIEW (Draws figure with white lines, hidden lines removed)
»M0DE (Changes from line drawing mode to shaded color mode)
<SHADED COLOR M0DE>
»VIEW (VIEW or DRAW will issue further prompts and then display

the figure as a shaded color image)
<DEFAULT VALUES?> Y
BACKGROUND BLACK?> Y (If NO then a color can be chosen for

the background)
<PART 11/12,COLOR NUMBER>
>»JL _1 9 (Chooses a color, 9°red, for each part that comprises

the model. Parts 1 to 1 will be colored RED)
»>CR (Ends color selection mode)
Figure will now be displayed in shades of red.

-61-

www.manaraa.com

APPENDIX III

Modified Subroutines in MOVIE.BYU

Type of changes:

1. MAJOR 2 :. MINOR 3 . ARRAY SIZES

COMMAND.FOR

Subroutine Change Subroutine

MAIN 2,3 NORMAL
ANIMAT 3 OPEN
CLEAR 2,3 PAINT
COARRO 2,3 PART
COLO 1,3 PIVOT
CONEL 3 POINTS
COORD 3 POLNUM
DIFF 2,3 POLYD
DRAW 3 POLYV
EDGE 3 READ
EXPL 3 REST
FAST 3 ROTA
FRIN 3 SCOP
HELP 1 SEPART
IMMUNE 3 SHADE
INIT 2,3 SHRINK
INTHID 3 TRAN
ISHADE 3 VIEDRA
LASTC 3 VIS IP
LIGHT 1,3 VISIT
LINE 3
MULTDC 3
MULTDD 3
NODNUM 3
NORAV 3
NORMI 3

Change

3
1
3
3
3
3
3
3
3
3
3
3
1
3

2,3
3
3

1,3
3
3

-62-

www.manaraa.com

HI DDE IN.FOR DEVICE.TK4

Subroutine Change Subroutine Change

CLIP 3 BGNFRM 1
CONSHO 3 ENDFRM 1
DRAWIT 3 LABELS 1
EDGMAK 3 PLTLIN 1
GETBLK 3 SRL 1
HIDDEN 2,3
INSECT 3
LINSHO 3
LSTSET 3
PACKER 3
POLMAK 3
POLSNP 3
RETBLK 3
UNPACK 3

Created Subroutines in MOVIE.BYU

DEVICE.TK4-DEVICEVS.FOR

Subroutine

DSSET
LVDRW
LVMOV
VS_CLEAR
VS_COLOR
VS_INIT
VS_MODE
VS_PRINT
VS_IO
VS SRL
VS~TEXT

-63-

www.manaraa.com

VITA

Jan Carl Silverman was born to Alice and Stanley Silverman

In Wilkes-Barre, Pennsylvania on June 29, 1950. He attended

Wyoming Valley West High School in 1968 where he was graduated

with honors. He then attended Rensselaer Polytechnic Institute

in Troy, New York from 1968 to 1972, and was graduated with a

degree in Mechanical Engineering. For the next ten years he

managed his own business, until he enrolled at Lehigh University,

where he received an M.S. degree in Computing Science in 1982.

Mr. Silverman is presently employed at Sanders Associates,

Nashua, New Hampshire, developing their implementation of the

Core Graphic Standards. He is a member of the IEEE and ACM.

-64-

